Cascaded Laser Wakefield Acceleration Scheme for Monoenergetic High-Energy Electron Beam Generation

  • Jiansheng Liu
  • Wentao Wang
  • Haiyang Lu
  • Changquan Xia
  • Mingwei Liu
  • Wang Cheng
  • Aihua Deng
  • Wentao Li
  • Hui Zhang
  • Jiancai Xu
  • Xiaoyan Liang
  • Yuxin Leng
  • Xiaoming Lu
  • Cheng Wang
  • Jianzhou Wang
  • Baifei Shen
  • Kazuhisa Nakajima
  • Ruxin Li
  • Zhizhan Xu
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 103)

Abstract

Cascaded laser wakefield acceleration (LWFA) of electrons is promising for producing monoenergetic electron beams well beyond 1 GeV by separating and controlling electron injection and postacceleration in two LWFA stages. We have demonstrated that electrons with Maxwellian spectra generated from the first LWFA assisted by tunnel-ionization-induced injection were seeded into the second LWFA and then accelerated to be a 0.8 GeV quasi-monoenergetic electron beam. Further acceleration toward multi-GeV may be fulfilled with a long plasma channel. Optical guiding of intense femtosecond laser pulses for powers up to 160 TW over a 4-cm long ablative capillary discharge plasma channel and laser wakefield acceleration of electrons well beyond 1 GeV were experimentally demonstrated. By employing an oxygen-containing ablative capillary, electron beams with energies extending up to 1.8 GeV were generated by using 130 TW, 55 fs laser pulses.

Keywords

Laser Pulse Electron Injection Energy Spread Plasma Channel Capillary Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National 973 Program of China (Contract No: 2011CB808100), NNSF of China (Contract Nos: 10974214, 60921004 and 10834008), the State Key Laboratory Program of Chinese Ministry of Science and Technology, and the Knowledge Innovation Program of CAS. K. Nakajima is supported by CAS visiting professorship for senior international scientists.

References

  1. 1.
    T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)Google Scholar
  2. 2.
    S.P.D. Mangles et al., Nature (Lond.) 431, 535 (2004)Google Scholar
  3. 3.
    C.G.R. Geddes et al., Nature (Lond.) 431, 538 (2004)Google Scholar
  4. 4.
    J. Faure et al., Nature (Lond.) 431, 541 (2004)Google Scholar
  5. 5.
    W.P. Leemans et al., Nat. Phys. 2, 696 (2006)Google Scholar
  6. 6.
    T.P.A. Ibbotson et al., Phys. Rev. ST Accel. Beams. 13(031), 301 (2010)Google Scholar
  7. 7.
    S. Karsch et al., New J. Phys. 9, 415 (2007)Google Scholar
  8. 8.
    N.A.M. Hafz et al., Nat. Photon. 2, 571 (2008)Google Scholar
  9. 9.
    S. Kneip et al., Phys. Rev. Lett. 103, 035002 (2009)Google Scholar
  10. 10.
    D.H. Froula et al., Phys. Rev. Lett. 103, 215006 (2009)Google Scholar
  11. 11.
    J.E. Ralph et al., Phys. Plasma. 17(056), 709 (2010)Google Scholar
  12. 12.
    S.F. Martins et al., Nat. Phys. 6, 311 (2010)Google Scholar
  13. 13.
    C.E. Clayton et al., Phys. Rev. Lett. 105, 105003 (2010)Google Scholar
  14. 14.
    C. McGuffey et al., Phys. Rev. Lett. 104, 025004 (2010)Google Scholar
  15. 15.
    A. Pak et al., Phys. Rev. Lett. 104, 025003 (2010)Google Scholar
  16. 16.
    F. Amiranoff et al., Phys. Rev. Lett. 81, 995 (1998)Google Scholar
  17. 17.
    C.E. Clayton et al., Phys. Rev. Lett. 70, 37 (1993)Google Scholar
  18. 18.
    M. Everett et al., Nature (Lond.) 368, 527 (1994)Google Scholar
  19. 19.
    V. Malka et al., Phys. Rev. ST Accel. Beams. 9(091), 301 (2006)Google Scholar
  20. 20.
    D. Kaganovich et al., Phys. Plasma. 12(100), 702 (2005)Google Scholar
  21. 21.
    A.G. Khachatryan et al., Phys. Rev. ST Accel. Beams. 10(121), 301 (2007)Google Scholar
  22. 22.
    R. Trines et al., New J. Phys. 12(045), 027 (2010)Google Scholar
  23. 23.
    J.S. Liu et al., Phys. Rev. Lett. 107, 035001 (2011)Google Scholar
  24. 24.
    B.B. Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)Google Scholar
  25. 25.
    X. Liang et al., Opt. Express. 15, 335 (2007)Google Scholar
  26. 26.
    K.A. Tanaka et al., Rev. Sci. Instrum. 76(013), 507 (2005)Google Scholar
  27. 27.
    Z. Zhou et al., J. Phys. B. 43(135) 603 (2010)Google Scholar
  28. 28.
    W. Lu et al., Phys. Rev. ST Accel. Beams. 10(061), 301 (2007)Google Scholar
  29. 29.
    K. Nakamura et al., Phys. Plasma. 14(5), 056708 (2007)Google Scholar
  30. 30.
    C. McGuffey et al., Phys. Plasma. 16(11), 113105 (2009)Google Scholar
  31. 31.
    T. Kameshima et al., Appl. Phys. Exp. 1, 066001 (2008)Google Scholar
  32. 32.
    T. Kameshima et al., Phys. Plasma. 16(9), 093101 (2009)Google Scholar
  33. 33.
    M. Liu et al., Rev. Sci. Instrum. 81(3), 036107 (2010)Google Scholar
  34. 34.
    E. Esarey et al., Rev. Mod. Phys. 81(3), 1229 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiansheng Liu
    • 1
  • Wentao Wang
    • 1
  • Haiyang Lu
    • 1
  • Changquan Xia
    • 1
  • Mingwei Liu
    • 1
  • Wang Cheng
    • 1
  • Aihua Deng
    • 1
  • Wentao Li
    • 1
  • Hui Zhang
    • 1
  • Jiancai Xu
    • 1
  • Xiaoyan Liang
    • 1
  • Yuxin Leng
    • 1
  • Xiaoming Lu
    • 1
  • Cheng Wang
    • 1
  • Jianzhou Wang
    • 1
  • Baifei Shen
    • 1
  • Kazuhisa Nakajima
    • 1
    • 2
  • Ruxin Li
    • 1
  • Zhizhan Xu
    • 1
  1. 1.State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics (SIOM)Chinese Academy of Sciences (CAS)ShanghaiChina
  2. 2.High Energy Accelerator Research Organization (KEK)TsukubaJapan

Personalised recommendations