Controlling the Motion of Electronic Wavepackets Using Cycle-Sculpted Two-Color Laser Fields

  • M. Kitzler
  • X. Xie
  • S. Roither
  • D. Kartashov
  • A. Baltuška
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 103)

Abstract

We use cycle-sculpted two-color waveforms to drive electronic wavepackets generated by strong-field ionization from helium, neon, and argon gas atoms and analyze their momentum spectra measured by electron-ion coincidence momentum spectroscopy. Varying the relative phase of the two colors allows to sculpt the ionizing field and hence to control the emission times and motion of the wavepackets on an attosecond timescale. Using semiclassical calculations, we investigate the influence of the ionic Coulomb field onto the motion of emitted electronic wavepackets. We further show that the measured electron momentum spectra contain interference patterns created by pairs of electron wavepackets that are released within a single laser-field cycle. We experimentally distinguish these subcycle interference structures from above-threshold ionization (ATI) peaks and argue that they can be used to extract the subcycle phase evolution of the laser-driven complex bound-state wavefunction.

Keywords

Coulomb Potential Laser Field Momentum Spectrum Interference Structure Laser Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge, funding by the Austrian Science Fund (FWF) under grants P21463-N22 and SFB-016 and discussions with J. Burgdörfer, D. Arbó, E. Persson, and S. Gräfe.

References

  1. 1.
    P.B. Corkum, F. Krausz, Nat. Phys. 3(6), 381 (2007). DOI 10.1038/nphys620. http://www.nature.com/doifinder/10.1038/nphys620
  2. 2.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81(1), 163 (2009). DOI 10.1103/RevModPhys.81.163. URL http://link.aps.org/doi/10.1103/RevModPhys.81.163 Google Scholar
  3. 3.
    P. Corkum, Phys. Rev. Lett. 71(13), 1994 (1993). DOI 10.1103/PhysRevLett.71.1994. URL http://link.aps.org/doi/10.1103/PhysRevLett.71.1994
  4. 4.
    M. Kitzler, M. Lezius, Phys. Rev. Lett. 95(25), 253001 (2005). DOI 10.1103/PhysRevLett.95.253001. URL http://link.aps.org/doi/10.1103/PhysRevLett.95.253001 Google Scholar
  5. 5.
    M. Kitzler, X. Xie, A. Scrinzi, A. Baltuska, Phys. Rev. A 76(1), 011801 (2007). DOI 10.1103/PhysRevA.76.011801. URL http://link.aps.org/doi/10.1103/PhysRevA.76.011801 Google Scholar
  6. 6.
    M. Spanner, O. Smirnova, P.B. Corkum, M.Y. Ivanov, J. Phys. B Atom. Mol. Opt. Phys. 37(12), L243 (2004). DOI 10.1088/0953-4075/37/12/L02. URL http://stacks.iop.org/0953-4075/37/i=12/a=L02?key=crossref.d453c23ea94b6703d9e16eeda244ce36
  7. 7.
    F. Lindner, M. Schätzel, H. Walther, A. Baltuška, E. Goulielmakis, F. Krausz, D. Milošević, D. Bauer, W. Becker, G. Paulus, Phys. Rev. Lett. 95(4), 040401 (2005). DOI 10.1103/PhysRevLett.95.040401. URL http://link.aps.org/doi/10.1103/PhysRevLett.95.040401
  8. 8.
    S. Yurchenko, S. Patchkovskii, I. Litvinyuk, P. Corkum, G. Yudin, Phys. Rev. Lett. 93(22), 223003 (2004). DOI 10.1103/PhysRevLett.93.223003. URL http://link.aps.org/doi/10.1103/PhysRevLett.93.223003 Google Scholar
  9. 9.
    M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavicic, H.C. Bandulet, H. Pépin, J.C. Kieffer, R. Dörner, D.M. Villeneuve, P.B. Corkum, Science (New York, N.Y.) 320(5882), 1478 (2008). DOI 10.1126/science.1157980. URL http://www.ncbi.nlm.nih.gov/pubmed/18556555 Google Scholar
  10. 10.
    Y. Huismans, A. Rouzée, A. Gijsbertsen, J.H. Jungmann, A.S. Smolkowska, P.S.W.M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J.M. Bakker, G. Berden, B. Redlich, A.F.G. van der Meer, H.G. Muller, W. Vermin, K.J. Schafer, M. Spanner, M.Y. Ivanov, O. Smirnova, D. Bauer, S.V. Popruzhenko, M.J.J. Vrakking, Science (New York, N.Y.) 331, 61 (2010). DOI 10.1126/science.1198450. URL http://www.ncbi.nlm.nih.gov/pubmed/21163963
  11. 11.
    S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirila, M. Lein, J.W.G. Tisch, J.P. Marangos, Science 312(5772), 424 (2006). DOI 10.1126/science.1123904. URL http://www.ncbi.nlm.nih.gov/pubmed/16513942
  12. 12.
    O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Nature 460(7258), 972 (2009). DOI 10.1038/nature08253. URL http://www.ncbi.nlm.nih.gov/pubmed/19626004
  13. 13.
    S. Haessler, J. Caillat, W. Boutu, C. Giovanetti-Teixeira, T. Ruchon, T. Auguste, Z. Diveki, P. Breger, A. Maquet, B. Carré, R. Taïeb, P. Salières, Nat. Phys. 6(3), 200 (2010). DOI 10.1038/nphys1511. URL http://www.nature.com/doifinder/10.1038/nphys1511
  14. 14.
    H.J. Wörner, J.B. Bertrand, D.V. Kartashov, P.B. Corkum, D.M. Villeneuve, Nature 466(7306), 604 (2010). DOI 10.1038/nature09185. URL http://www.nature.com/doifinder/10.1038/nature09185
  15. 15.
    Y. Mairesse, J. Higuet, N. Dudovich, D. Shafir, B. Fabre, E. Mével, E. Constant, S. Patchkovskii, Z. Walters, M.Y. Ivanov, O. Smirnova, Phys. Rev. Lett. 104(21), 213601 (2010). DOI 10.1103/PhysRevLett.104.213601. URL http://link.aps.org/doi/10.1103/PhysRevLett.104.213601
  16. 16.
    M. Wollenhaupt, A. Assion, D. Liese, C. Sarpe-Tudoran, T. Baumert, S. Zamith, M. Bouchene, B. Girard, A. Flettner, U. Weichmann, G. Gerber, Phys. Rev. Lett. 89(17), 173001 (2002). DOI 10.1103/PhysRevLett.89.173001. URL http://link.aps.org/doi/10.1103/PhysRevLett.89.173001
  17. 17.
    T. Remetter, P. Johnsson, J. Mauritsson, K. Varjú, Y. Ni, F. Lépine, E. Gustafsson, M. Kling, J. Khan, R. López-Martens, K.J. Schafer, M.J.J. Vrakking, A. L’Huillier, Nat. Phys. 2(5), 323 (2006). DOI 10.1038/nphys290. URL http://www.nature.com/doifinder/10.1038/nphys290
  18. 18.
    F. Quéré, J. Itatani, G. Yudin, P. Corkum, Phys. Rev. Lett. 90(7), 073902 (2003). DOI 10.1103/PhysRevLett.90.073902. URL http://link.aps.org/doi/10.1103/PhysRevLett.90.073902 Google Scholar
  19. 19.
    T. Weinacht, J. Ahn, P. Bucksbaum, Phys. Rev. Lett. 80(25), 5508 (1998). DOI 10.1103/PhysRevLett.80.5508. URL http://link.aps.org/doi/10.1103/PhysRevLett.80.5508 Google Scholar
  20. 20.
    J. Mauritsson, T. Remetter, M. Swoboda, K. Klünder, A. L’Huillier, K. Schafer, O. Ghafur, F. Kelkensberg, W. Siu, P. Johnsson, M. Vrakking, I. Znakovskaya, T. Uphues, S. Zherebtsov, M. Kling, F. Lépine, E. Benedetti, F. Ferrari, G. Sansone, M. Nisoli, Phys. Rev. Lett. 105(5), 053001 (2010). DOI 10.1103/PhysRevLett.105.053001. URL http://link.aps.org/doi/10.1103/PhysRevLett.105.053001 Google Scholar
  21. 21.
    D. Fittinghoff, J. Bowie, J. Sweetser, R. Jennings, M. Krumbüugel, K. DeLong, R. Trebino, I. Walmsley, Opt. Lett. 21(12), 884 (1996). URL http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-12-884 Google Scholar
  22. 22.
    C. Iaconis, V. Wong, I. Walmsley, IEEE J. Sel. Top. Quant. Electron. 4(2), 285 (1998). DOI 10.1109/2944.686734. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=686734
  23. 23.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N. Rahman, Phys. Rev. Lett. 42(17), 1127 (1979). DOI 10.1103/PhysRevLett.42.1127. URL http://link.aps.org/doi/10.1103/PhysRevLett.42.1127 Google Scholar
  24. 24.
    D.G. Arbó, K.L. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 81(2), 021403 (2010). DOI 10.1103/PhysRevA.81.021403. URL http://link.aps.org/doi/10.1103/PhysRevA.81.021403 Google Scholar
  25. 25.
    D. Arbó, E. Persson, J. Burgdörfer, Phys. Rev. A 74(6), 063407 (2006). DOI 10.1103/PhysRevA.74.063407. URL http://link.aps.org/doi/10.1103/PhysRevA.74.063407 Google Scholar
  26. 26.
    R. Gopal, K. Simeonidis, R. Moshammer, T. Ergler, M. Dürr, M. Kurka, K.U. Kühnel, S. Tschuch, C.D. Schröter, D. Bauer, J. Ullrich, A. Rudenko, O. Herrwerth, T. Uphues, M. Schultze, E. Goulielmakis, M. Uiberacker, M. Lezius, M. Kling, Phys. Rev. Lett. 103(5), 053001 (2009). DOI 10.1103/PhysRevLett.103.053001. URL http://link.aps.org/doi/10.1103/PhysRevLett.103.053001 Google Scholar
  27. 27.
    D. Schumacher, F. Weihe, H. Muller, P. Bucksbaum, Phys. Rev. Lett. 73(10), 13441347 (1994). DOI doi/10.1103/PhysRevLett.73.1344. URL http://link.aps.org/doi/10.1103/PhysRevLett.73.1344 Google Scholar
  28. 28.
    H. Muller, P. Bucksbaum, D. Schumacher, A. Zavriyev, J. Phys. B Atom. Mol. Opt. Phys. 23, 2761 (1990). DOI 10.1088/0953-4075/23/16/018. URL http://iopscience.iop.org/0953-4075/23/16/018
  29. 29.
    M. Lewenstein, K. Kulander, K. Schafer, P. Bucksbaum, Phys. Rev. A 51(2), 1495 (1995). DOI 10.1103/PhysRevA.51.1495. URL http://link.aps.org/doi/10.1103/PhysRevA.51.1495 Google Scholar
  30. 30.
    D. Arbó, K. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 82(4), 043426 (2010). DOI 10.1103/PhysRevA.82.043426. URL http://link.aps.org/doi/10.1103/PhysRevA.82.043426 Google Scholar
  31. 31.
    D. Arbó, S. Yoshida, E. Persson, K. Dimitriou, J. Burgdörfer, Phys. Rev. Lett. 96(14), 143003 (2006). DOI 10.1103/PhysRevLett.96.143003. URL http://link.aps.org/doi/10.1103/PhysRevLett.96.143003 Google Scholar
  32. 32.
    S. Chelkowski, A. Bandrauk, A. Apolonski, Phys. Rev. A 70(1), 013815 (2004). DOI 10.1103/PhysRevA.70.013815. URL http://link.aps.org/doi/10.1103/PhysRevA.70.013815 Google Scholar
  33. 33.
    S. Chelkowski, A. Bandrauk, Phys. Rev. A 71(5), 053815 (2005). DOI 10.1103/PhysRevA.71.053815. URL http://link.aps.org/doi/10.1103/PhysRevA.71.053815 Google Scholar
  34. 34.
    O. Smirnova, M. Spanner, M. Ivanov, Phys. Rev. A 77(3), 033407 (2008). DOI 10.1103/PhysRevA.77.033407. URL http://link.aps.org/doi/10.1103/PhysRevA.77.033407 Google Scholar
  35. 35.
    F. Ehlotzky, Phys. Rep. 345(4), 175 (2001). DOI 10.1016/S0370-1573(00)00100-9. URL http://linkinghub.elsevier.com/retrieve/pii/S0370157300001009
  36. 36.
    H. Ohmura, T. Nakanaga, M. Tachiya, Phys. Rev. Lett. 92(11), 113002 (2004). DOI 10.1103/PhysRevLett.92.113002. URL http://link.aps.org/doi/10.1103/PhysRevLett.92.113002 Google Scholar
  37. 37.
    H. Ohmura, N. Saito, M. Tachiya, Phys. Rev. Lett. 96(17), 173001 (2006). DOI 10.1103/PhysRevLett.96.173001. URL http://link.aps.org/doi/10.1103/PhysRevLett.96.173001 Google Scholar
  38. 38.
    D. Ray, F. He, S. De, W. Cao, H. Mashiko, P. Ranitovic, K. Singh, I. Znakovskaya, U. Thumm, G. Paulus, M. Kling, I. Litvinyuk, C. Cocke, Phys. Rev. Lett. 103(22), 223201 (2009). DOI 10.1103/PhysRevLett.103.223201. URL http://link.aps.org/doi/10.1103/PhysRevLett.103.223201 Google Scholar
  39. 39.
    S. De, I. Znakovskaya, D. Ray, F. Anis, N. Johnson, I. Bocharova, M. Magrakvelidze, B. Esry, C. Cocke, I. Litvinyuk, M. Kling, Phys. Rev. Lett. 103(15), 153002 (2009). DOI 10.1103/PhysRevLett.103.153002. URL http://link.aps.org/doi/10.1103/PhysRevLett.103.153002
  40. 40.
    R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt-Böcking, Phys. Rep. 330(2–3), 95 (2000). DOI 10.1016/S0370-1573(99)00109-X. URL http://linkinghub.elsevier.com/retrieve/pii/S037015739900109X
  41. 41.
    R. Moshammer, B. Feuerstein, W. Schmitt, A. Dorn, C. Schröter, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, Others, Phys. Rev. Lett. 84(3), 447 (2000). URL http://link.aps.org/doi/10.1103/PhysRevLett.84.447 Google Scholar
  42. 42.
    G. Yudin, M. Ivanov, Phys. Rev. A 64(1), 013409 (2001). DOI 10.1103/PhysRevA.64.013409. URL http://link.aps.org/doi/10.1103/PhysRevA.64.013409 Google Scholar
  43. 43.
    X.M. Tong, C.D. Lin, J. Phys. B Atom. Mol. Opt. Phys. 38(15), 2593 (2005). DOI 10.1088/0953-4075/38/15/001. URL http://stacks.iop.org/0953-4075/38/i=15/a=001?key=crossref.7d04da6e26e52de9b427ea49c7ca2a83
  44. 44.
    N. Delone, V. Krainov, J. Opt. Soc. Am. B 8(6), 1207 (1991). URL http://www.opticsinfobase.org/ol/ViewMedia.cfm?id=6026%5C%26seq=0 Google Scholar
  45. 45.
    P. Ho, J. Eberly, Phys. Rev. Lett. 95(19), 193002 (2005). DOI 10.1103/PhysRevLett.95.193002. URL http://link.aps.org/doi/10.1103/PhysRevLett.95.193002 Google Scholar
  46. 46.
    P. Ho, R. Panfili, S. Haan, J. Eberly, Phys. Rev. Lett. 94(9), 093002 (2005). DOI 10.1103/PhysRevLett.94.093002. URL http://link.aps.org/doi/10.1103/PhysRevLett.94.093002 Google Scholar
  47. 47.
    X. Xie, A. Scrinzi, M. Wickenhauser, A. Baltuška, I. Barth, M. Kitzler, Phys. Rev. Lett. 101(3), 033901 (2008). DOI 10.1103/PhysRevLett.101.033901. URL http://link.aps.org/doi/10.1103/PhysRevLett.101.033901 Google Scholar
  48. 48.
    P. Dietrich, N. Burnett, M. Ivanov, P. Corkum, Phys. Rev. A 50(5), R3585 (1994). DOI 10.1103/PhysRevA.50.R3585. URL http://link.aps.org/doi/10.1103/PhysRevA.50.R3585
  49. 49.
    X. Zhou, R. Lock, W. Li, N. Wagner, M. Murnane, H. Kapteyn, Phys. Rev. Lett. 100(7), 073902 (2008). DOI 10.1103/PhysRevLett.100.073902. URL http://link.aps.org/doi/10.1103/PhysRevLett.100.073902 Google Scholar
  50. 50.
    R. Freeman, P. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M. Geusic, Phys. Rev. Lett. 59(10), 1092 (1987). DOI 10.1103/PhysRevLett.59.1092. URL http://link.aps.org/doi/10.1103/PhysRevLett.59.1092 Google Scholar
  51. 51.
    W. Li, X. Zhou, R. Lock, S. Patchkovskii, A. Stolow, H.C. Kapteyn, M.M. Murnane, Science 322(5905), 1207 (2008). DOI 10.1126/science.1163077. URL http://www.ncbi.nlm.nih.gov/pubmed/18974317
  52. 52.
    E. Goulielmakis, Z.H. Loh, A. Wirth, R. Santra, N. Rohringer, V.S. Yakovlev, S. Zherebtsov, T. Pfeifer, A.M. Azzeer, M.F. Kling, S.R. Leone, F. Krausz, Nature 466(7307), 739 (2010). DOI 10.1038/nature09212. URL http://www.nature.com/doifinder/10.1038/nature09212
  53. 53.
    M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlev, M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schröder, M. Lezius, K.L. Kompa, H.G. Muller, M.J.J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nature 446(7136), 627 (2007). DOI 10.1038/nature05648. URL http://www.ncbi.nlm.nih.gov/pubmed/17410167

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Kitzler
    • 1
  • X. Xie
    • 1
  • S. Roither
    • 1
  • D. Kartashov
    • 1
  • A. Baltuška
    • 1
  1. 1.Photonics InstituteVienna University of TechnologyViennaAustria

Personalised recommendations