Two-XUV-Photon Processes: A Key Instrument in Attosecond Pulse Metrology and Time Domain Applications

  • P. Tzallas
  • J. Kruse
  • E. Skantzakis
  • L. A. A. Nikolopoulos
  • G. D. Tsakiris
  • D. Charalambidis
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 103)

Abstract

Attosecond pulses today are generated at pulse energies leading to intensities sufficient to induce two-photon transitions in the extreme ultraviolet (XUV) spectral region. Recently, ultra-broadband coherent XUV continua fulfill also the requirements in inducing such processes. Two-XUV-photon ionization is a pivotal tool in attosecond pulse metrology, as well as for XUV-pump-XUV-probe applications targeting the tracking of ultrafast dynamics, providing at the same time spatial selectivity.Based on these developments, this chapter (a) reviews approaches leading to high intensities of attosecond pulse trains and coherent XUV continua; (b) reviews metrology approaches based on two-XUV-photon ionization, showing their importance through comparative studies with existing XUV-IR cross-correlation approaches; and (c) reports the feasibility of XUV-pump-XUV-probe applications at the 1fs resolution level, in an experiment, where atomic coherence is induced in a rich manifold of doubly excited and inner-shell excited autoionizing states, the evolution of which is tracked through double ionization.

Keywords

Double Ionization Attosecond Pulse Double Peak Structure Carrier Envelope Phase Atomic Coherence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported in part by the European Commission programmes ULF, ALADIN (Grant Agreement No. 228334), ATTOFEL (Grant Agreement No. 238362), FASTQUAST (PITN-GA-2008-214962), ELI-PP (Grant Agreement No. 212105) and FLUX program (Contract No. PIAPP-GA-2008-218053) of the 7th FP. We thank G. Konstantinidis and A. Kostopoulos for their assistance in developing special optical components. L.A.A.N. acknowledges support from COST CM0702 action and ICHEC at Dublin.

References

  1. 1.
    P. Agostini L.F. DiMauro Rep. Prog. Phys 67, 813–855 (2004)Google Scholar
  2. 2.
    P.B. Corkum, F. Krausz Nature Phys 3, 381–387 (2007) and references thereinGoogle Scholar
  3. 3.
    F. Krausz, M. Ivanov Rev. Mod. Phys 81, 163 (2009)Google Scholar
  4. 4.
    G. Sansone et al., Science 314, 442 (2006)Google Scholar
  5. 5.
    E. Goulielmakis et al. Science 320, 1614 (2008)Google Scholar
  6. 6.
    M. Hentschel et al., Nature 414, 509 (2002)Google Scholar
  7. 7.
    R. Kienberger et al., Nature 427, 817 (2004)Google Scholar
  8. 8.
    A. Baltuska et al., Nature 421, 611 (2003)Google Scholar
  9. 9.
    F. Ferrari et al., Nature Photonics 4, 875, (2010)Google Scholar
  10. 10.
    S. Witte et al., Opt. Express 14, 8168 (2007)Google Scholar
  11. 11.
    D. Herrmann et al., Opt. Lett. 34, 2459 (2009)Google Scholar
  12. 12.
    D. Descamps et al., Phys. Rev. A. 64 031404 (2001)Google Scholar
  13. 13.
    Y. Kobayashi et al. Opt. Lett. 23, 64 (1998)Google Scholar
  14. 14.
    T. Sekikawa et al. Phys. Rev. Lett. 23, 64 (1998)Google Scholar
  15. 15.
    T. Sekikawa et al. Phys. Rev. Lett. 88, 193902 (2002)Google Scholar
  16. 16.
    A. Peralta Conde et al., Phys. Rev. A. 79, 061405 (2009)Google Scholar
  17. 17.
    N.A. Papadogiannis et al., Phys. Rev. Lett. 90, 133902 (2003)Google Scholar
  18. 18.
    P. Tzallas et al., Nature 426, 267 (2003)Google Scholar
  19. 19.
    P. Tzallas et al., J. Mod. Opt. 52, 321 (2005)Google Scholar
  20. 20.
    Y. Nabekawa et. al. Phys. Rev. Lett. 96, 083901 (2006)Google Scholar
  21. 21.
    Y. Nabekawa et. al. Phys. Rev. Lett. 97, 153904 (2006)Google Scholar
  22. 22.
    Y. Namura et al., Nature Physics 5, 124 (2009)Google Scholar
  23. 23.
    R. Hörlein et al., New J. Phys. 12, 043020 (2010)Google Scholar
  24. 24.
    P.M. Paul et al., Science 292, 1689 (2001)Google Scholar
  25. 25.
    J. Kruse, et al., Phys. Rev. A. 82, 021402(R) (2010)Google Scholar
  26. 26.
    J. Kruse, et al., Phys. Rev. A. 82, 033438 (2010)Google Scholar
  27. 27.
    P. Tzallas, et al., Nature Phys. 3, 846 (2007)Google Scholar
  28. 28.
    E. Skantzakis et al., Opt. Lett. 34, 1732 (2009)Google Scholar
  29. 29.
    E. Skantzakis et al., Phys. Rev. Lett. 105, 043902 (2010)Google Scholar
  30. 30.
    P. Tzallas et al., Nature Phys. DOI: 10.1038/NPHYS2033 (2011)Google Scholar
  31. 31.
    P. Tzallas et al., Phys. Rev. A. 82, 061401(R) (2010)Google Scholar
  32. 32.
    E. Constant et al., Phys. Rev. Lett. 82, 1668 (1999)Google Scholar
  33. 33.
    E.J. Takahashi et al., IEEE J. Sel. Top. Q. Elec. 10, 1315 (2004)Google Scholar
  34. 34.
    J.L. Krause et al., Phys. Rev. A. 45, 4998, (1992)Google Scholar
  35. 35.
    J.F. Hergott et al., Phys. Rev. A. 66, 021801(R) (2002)Google Scholar
  36. 36.
    J. Seres et al., Nature Phys. 3, 878 (2007)Google Scholar
  37. 37.
    F. Quere et al., Phys. Rev. Lett. 96, 125004 (2006)Google Scholar
  38. 38.
    A. Tarasevitch et al., Phys. Rev. Lett. 98, 103902 (2007)Google Scholar
  39. 39.
    F. Quere et al., Phys. Rev. Lett. 100, 095004 (2008)Google Scholar
  40. 40.
    C. Thaury et al., Nature Phys. 4, 631 (2008)Google Scholar
  41. 41.
    S.V. Bulanov et al., Phys. Plasmas. 1, 745 (1994)Google Scholar
  42. 42.
    G.D. Tsakiris et al., New J. Phys. 8, 19 (2006)Google Scholar
  43. 43.
    T. Baeva et al., Phys. Rev. E. 74, 046404 (2006)Google Scholar
  44. 44.
    B. Dromey et al., Nature Phys. 2, 456 (2006)Google Scholar
  45. 45.
    S. Gordienko et al., Phys. Rev. Lett. 93, 115002 (2004)Google Scholar
  46. 46.
    R. Lichters et al., Phys. Plasmas 3, 3425 (1996)Google Scholar
  47. 47.
    P. Tzallas et al., Progress in Ultrafast Intense Laser Science, vol. VII. (Springer, New York) p.163, (2010) (ISBN: 978-3-642-18326-3)Google Scholar
  48. 48.
    O. Tcherbakoff et al., Phys. Rev. A.68, 043804 (2003)Google Scholar
  49. 49.
    C. Altucci et al., Opt. Lett. 33, 2943 (2008)Google Scholar
  50. 50.
    H. Mashiko et al., Phys. Rev. Lett. 100, 103906 (2008)Google Scholar
  51. 51.
    E. Takahashi et al., Phys. Rev. Lett. 104, 233901 (2010)Google Scholar
  52. 52.
    V.V. Strelkov et al., New J. Phys. 10, 083040 (2008)Google Scholar
  53. 53.
    I.J. Sola et al., Nature Phys. 2, 319 (2006)Google Scholar
  54. 54.
    G. Sansone, Phys. Rev. A. 79, 053410 (2009)Google Scholar
  55. 55.
    C. Iaconis, I.A. Walmsley Opt. Lett. 23, 792 (1998)Google Scholar
  56. 56.
    M. Drescher et al., Science291, 1923 (2001)Google Scholar
  57. 57.
    Y. Mairesse, F. Quere, Phys. Rev. A. 71, 011401(R) (2005)Google Scholar
  58. 58.
    E. Cormier et al., Phys. Rev. Lett. 94, 033905 (2005)Google Scholar
  59. 59.
    Y. Mairesse et al., Phys. Rev. Lett. 94, 173903 (2005)Google Scholar
  60. 60.
    N. Dudovich et al., Nature Phys. 2, 781 (2006)Google Scholar
  61. 61.
    J.M. Dahlstrom et al., Phys. Rev. A. 80, 033836 (2009)Google Scholar
  62. 62.
    P.B. Corkum Phys. Rev. Lett. 71, 1994 (1993)Google Scholar
  63. 63.
    M. Lewenstein et al., Phys. Rev. A. 49, 2117 (1994)Google Scholar
  64. 64.
    Ph. Antoine et al., Phys. Rev. Lett. 77, 12347 (1996)Google Scholar
  65. 65.
    M.B. Gaarde et al., Phys. Rev. Lett. 89, 213901 (2002)Google Scholar
  66. 66.
    P. Salieres et al., Phys. Rev. Lett. 74, 3776 (1995)Google Scholar
  67. 67.
    M. Bellini et al., Phys. Rev. Lett. 81, 297 (1998)Google Scholar
  68. 68.
    P. Lambropoulos et al., Phys. Rev. A. 78, 055402 (2008)Google Scholar
  69. 69.
    T. Nakajima, L.A.A. Nikolopoulos Phys. Rev. A. 66, 041402(R) (2002)Google Scholar
  70. 70.
    E. Benis et al., Phys. Rev. A. 74, 051402 (2006)Google Scholar
  71. 71.
    M.A. Kornberg, P. Lambropoulos J. Phys. B. 32, L63 (1999)Google Scholar
  72. 72.
    V. Blanchet et al., J. Chem. Phys. 108, 4862 (1998)Google Scholar
  73. 73.
    B. Campbell et al., Phys. Rev. A. 57, 4616 (1998)Google Scholar
  74. 74.
    R.R. Jones et al., Phys. Rev. Lett. 71, 2575 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. Tzallas
    • 1
  • J. Kruse
    • 1
    • 2
  • E. Skantzakis
    • 1
    • 2
  • L. A. A. Nikolopoulos
    • 3
  • G. D. Tsakiris
    • 4
  • D. Charalambidis
    • 1
    • 2
  1. 1.Foundation for Research and Technology – HellasInstitute of Electronic Structure and LaserHeraklion (Crete)Greece
  2. 2.Department of PhysicsUniversity of CreteHeraklion (Crete)Greece
  3. 3.School of Physical ScienceDublin City UniversityDublin 9Ireland
  4. 4.Max-Planck-Institut für QuantenoptikGarchingGermany

Personalised recommendations