Ultrafast Optical Gating by Molecular Alignment

  • Heping Zeng
  • Peifen Lu
  • Jia Liu
  • Wenxue Li
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 103)


Field-free alignment of gaseous molecules could function as an ultrafast polarization optical gating with periodic revivals originated from quantum wakes of the impulsively excited molecular wave packets. Recent experimental explorations have revealed some unique applications of ultrafast optical gating from pre-excited molecular rotational wave packets, such as molecular-alignment-based cross-correlation frequency-resolved optical gating (M-XFROG) for ultrashort pulse characterization, and molecular-alignment-based ultrafast optical imaging and optical buffer with revivable optical storage in molecular rotational wave packets. The M-XFROG technique employs the impulsive transient alignment of gaseous molecules as a gate function to characterize the ultrashort pulse and exhibits the advantage of no phase-matching constraint and applicability to pulses at any wavelength ranging from ultraviolet to far-infrared. Ultrashort pulse meaurements of ultraviolet pulse, supercontinuum pulse, optical parametric amplifier, and multi-colored pulses were experimentally performed by using the M-XFROG technique. Ultrafast optical imaging by periodic molecular alignment was also demonstrated, involving the optical image storage in the pre-excited molecular wakes followed by periodic readout and display. For diatomic molecules in air, both raised and intagliated monochromatic images were observed with periodic revivals of aligned molecules. Ultrafast time-encoded holographic-like imaging was realized to encode the phase information of a three-demensional object in the molecular revivals. The monochromatic images could be transformed into colorful optical imaging by using a spatially chirped supercontinuum laser pulse to chromatically encode the stored images with different colors at different delays with respect to the molecular alignment revivals.


Pump Pulse Probe Pulse Ultrashort Pulse Molecular Alignment Optical Gating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by National Natural Science Fund, and National Basic Research Program of China (2011CB808105). Contributions from H. Zeng’s group members and students at ECNU (Jian Wu, Hao Li, Haifeng Pan, and Liang’en Ding) are highly appreciated.


  1. 1.
    H. Stapelfeldt, T. Seideman, Colloquium: Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543 (2003)Google Scholar
  2. 2.
    J.J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, T. Seide-man, Three dimensional alignment of molecules using elliptically polarized laser fields. Phys. Rev. Lett. 85, 2470 (2000)Google Scholar
  3. 3.
    T. Kanai, S. Minemoto, H. Sakai, Quantum interference during high-order harmonic generation from aligned molecules. Nature (London) 435, 470 (2005)Google Scholar
  4. 4.
    J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Tomographic imaging of molecular orbitals. Nature (London) 432, 867 (2004)Google Scholar
  5. 5.
    R.A. Bartels, T.C. Weinacht, N. Wagner, M. Baertschy, C.H. Greene, M.M. Murnane, H.C. Kapteyn, Phase modulation of ultrashort light pulses using molecular rotational wave packets. Phys. Rev. Lett. 88, 013903 (2001)Google Scholar
  6. 6.
    H. Cai, J. Wu, A. Couairon, H. Zeng, Spectral modulation of femtosecond laser pulse induced by molecular alignment revivals. Opt. Lett. 34, 827 (2009)Google Scholar
  7. 7.
    J. Wu, H. Cai, A. Couairon, H. Zeng, Wavelength tuning of a few-cycle laser pulse by molecular alignment in femtosecond filamentation wake. Phys. Rev. A. 79, 063812 (2009)Google Scholar
  8. 8.
    J. Wu, H. Cai, Y. Peng, H. Zeng, Controllable supercontinuum generation by the quantum wake of molecular alignment. Phys. Rev. A 79, 041404(R) (2009)Google Scholar
  9. 9.
    F. Calegari, C. Vozzi, S. Gasilov, E. Benedetti, G. Sansone, M. Nisoli, S. De Silvestri, S. Stagira, Rotational raman effects in the wake of optical filamentation. Phys. Rev. Lett. 100, 123006 (2008)Google Scholar
  10. 10.
    S. Varma, Y.H. Chen, H.M. Milchberg, Trapping and destruction of long-range high-intensity optical filaments by molecular quantum Wakes in Air. Phys. Rev. Lett. 101, 205001 (2008)Google Scholar
  11. 11.
    R. Trebino, K.W. DeLong, D.N. Fittnghoff, J.N. Sweetser, M.A. Krubugel, B. A. Richman, Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277 (1997)Google Scholar
  12. 12.
    B. Friedrich, D. Herschbach, Alignment and trapping of molecules in intense laser fields. Phys. Rev. Lett. 74, 4623 (1995)Google Scholar
  13. 13.
    I.S. Averbukh, N.F. Perelman, Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics. Phys. Lett. A., 139, 449 (1989)Google Scholar
  14. 14.
    P.W. Dooley, I.V. Litvinyuk, K.F. Lee, D.M. Rayner, M. Spanner, D.M. Villeneuve, P.B. Corkum, Direct imaging of rotational wave-packet dynamics of diatomic molecules. Phys. Rev. A 68, 023406 (2003)Google Scholar
  15. 15.
    I.V. Litvinyuk, K.F. Lee, P.W. Dooley, D.M. Rayner, D.M. Villeneuve, P.B. Corkum, Alignment-dependent strong field ionization of molecules. Phys. Rev. Lett. 90, 233003 (2003)Google Scholar
  16. 16.
    V. Renard, M. Renard, S. Guérin, Y.T. Pashayan, B. Lavorel, O. Faucher, H.R. Jauslin, Postpulse molecular alignment measured by a weak field polarization technique. Phys. Rev. Lett.90, 153601 (2003)Google Scholar
  17. 17.
    V. Renard, M. Renard, A. Rouzée, S. Guérin, H.R. Jauslin, B. Lavorel, O. Faucher, Nonintrusive monitoring and quantitative analysis of strong laser-field-induced impulsive alignment. Phys. Rev. A. 70, 033420 (2004)Google Scholar
  18. 18.
    J. Wu, H. Cai, H. Zeng, A. Couairon, Femtosecond filamentation and pulse compression in the wake of molecular alignment. Opt. Lett. 33, 2593 (2008)Google Scholar
  19. 19.
    R. Trebino, D.J. Kane, Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. J. Opt. Soc. Am. A 10, 1101 (1993)Google Scholar
  20. 20.
    D.J. Kane, R. Trebino, Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 29,571 (1993)Google Scholar
  21. 21.
    K.W. DeLong, R. Trebino, J. Hunter, W.E. White, Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B 11, 2206 (1994)Google Scholar
  22. 22.
    T. Tsang, M.A. Krumbügel, K.W. DeLong, D.N. Fittinghoff, R. Trebino, Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation. Opt. Lett. 21, 1381 (1996)Google Scholar
  23. 23.
    J.N. Sweetser, D.N. Fittinghoff, R. Trebino, Transient-grating frequency-resolved optical gating. Opt. Lett. 22, 519 (1997)Google Scholar
  24. 24.
    J. Wu, H. Cai, Y. Tong, H. Zeng, Measurement of field-free molecular alignment by cross-defocusing assisted polarization spectroscopy. Opt. Express. 17, 16300 (2009)Google Scholar
  25. 25.
    K.W. DeLong, R. Trebino, W.E. White, Simultaneous recovery of two ultrashort laser pulses from a single spectrogram. J. Opt. Soc. Am. B 12,2463 (1995)Google Scholar
  26. 26.
    P. Lu, J. Liu, H. Li, H. Pan, J. Wu, H. Zeng, Cross-correlation frequency-resolved optical gating by molecular alignment for ultraviolet femtosecond pulse measurement. Appl. Phys. Lett. 97, 061101 (2010)Google Scholar
  27. 27.
    H. Li, J. Liu, Y. Feng, C. Chen, H. Pan, J. Wu, H. Zeng, Temporal and phase measurements of ultraviolet femtosecond pulses at 200 nm by molecular alignment based frequency resolved optical gating Appl. Phys. Lett. 99, 011108 (2011)Google Scholar
  28. 28.
    X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A.P. Shreenath, R. Trebino, R.S. Windeler, Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum. Opt. Lett. 27, 1174 (2002)Google Scholar
  29. 29.
    J. Liu, Y. Feng, H. Li, P. Lu, H. Pan, J. Wu, H. Zeng, Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating. Opt. Express. 19, 40 (2011)Google Scholar
  30. 30.
    C. Marceau, Y. Chen, F. Théberge, M. Châteauneuf, J. Dubois, S.L. Chin, Ultrafast birefringence induced by a femtosecond laser filament in gases. Opt. Lett. 34, 1417 (2009)Google Scholar
  31. 31.
    Y. Feng, H. Pan, J. Liu, C. Chen, J. Wu, H. Zeng, Direct measurement of field-free molecular alignment by spatial (de)focusing effects. Opt. Express 19, 2852 (2011)Google Scholar
  32. 32.
    J. Wu, H. Cai, P. Lu, X. Bai, L. Ding, H. Zeng, Intense ultrafast light kick by rotational Raman wake in atmosphere. App. Phys. Lett. 95, 221502 (2009)Google Scholar
  33. 33.
    H. Kawamoto, The history of liquid-crystal displays. Proc. IEEE 90, 460 (2002).Google Scholar
  34. 34.
    J.A. Castellano, Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry (World Scientific Publishing Company, Singapore, 2005)Google Scholar
  35. 35.
    V. Renard, O. Faucher, B. Lavorel, Measurement of laser-induced alignment of molecules by cross defocusing. Opt. Lett. 30, 70 (2005)Google Scholar
  36. 36.
    L. Dhar, K. Curtis, T. Fäcke, Holographic data storage: Coming of age. Nature Photon. 2, 403 (2008)Google Scholar
  37. 37.
    J. Rosen, G. Brooker, Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nature Photon. 2, 190 (2008)Google Scholar
  38. 38.
    P.B. Corkum, C. Rolland, T. Srinivasan-Rao, Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268 (1986)Google Scholar
  39. 39.
    R. Won, The story behind the screen Nature Photon. 1, 280 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Precision Spectroscopy, East China Normal UniversityShanghaiChina

Personalised recommendations