Probing Electron Dynamics in Simple Molecules with Attosecond Pulses

  • Paula Rivière
  • Alicia Palacios
  • Jhon Fredy Pérez-Torres
  • Fernando Martín
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 103)


Attosecond pulses are an ideal tool to explore electron and nuclear dynamics in atoms and molecules. Either as single attosecond pulses (SAP), in attosecond pulse trains (APT), or in combination with infrared (IR) pulses, these pulses, with frequencies in the VUV-XUV regime, have been widely used to probe ionization, electron tunneling, or autoionization in atoms. More recently, similar processes have been studied in molecules. A correct theoretical description of such processes in molecules often requires a fully dimensional treatment due to the important role of nuclear motion and electron correlation. This restricts ab initio calculations to the simplest molecules. In this chapter, we discuss single ionization of hydrogen molecules (H2 and D2) induced by time-delayed SAP+IR and APT+IR schemes. Ab initio time-dependent theoretical calculations are compared with existing experiments.


Ionization Probability Dissociative Ionization Kinetic Energy Distribution Attosecond Pulse Nuclear Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Science 320, 1614 (2008)Google Scholar
  2. 2.
    H. Mashiko, A. Suda, K. Midorikawa, Opt. Lett. 29, 1927 (2004)Google Scholar
  3. 3.
    A. Barty, J. Phys. B Atom. Mol. Opt. Phys. 43, 194014 (2010)Google Scholar
  4. 4.
    C. Bostedt, H.N. Chapman, J.T. Costello, J.R. Crespo López-Urrutia, S. Düsterer, S.W. Epp, J. Feldhaus, A. Föhlisch, M. Meyer, T. Möller, Nuclear Instruments and Methods in Physics Research Section A: Accelerators Spectrometers Detectors Associated Equipment 601, 108 (2009)Google Scholar
  5. 5.
    M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlev, M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schröder, M. Lezius, K.L. Kompa, H.G. Muller, M.J.J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nature 446, 627 (2007)Google Scholar
  6. 6.
    M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419, 803 (2002)Google Scholar
  7. 7.
    J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Nature 432, 867 (2004)Google Scholar
  8. 8.
    G. Yudin, S. Chelkowski, J. Itatani, A.D. Bandrauk, P.B. Corkum, Phys. Rev. A 72, 051401(R) (2005)Google Scholar
  9. 9.
    S. Chelkowski, G. Yudin, A.D. Bandrauk, J. Phys. B Atom. Mol. Opt. Phys. 39, S409 (2006)Google Scholar
  10. 10.
    M.H. Xu, L.Y. Peng, Z. Zhang, Q. Gong, J. Phys. B Atom. Mol. Opt. Phys. 44, 021001 (2011)Google Scholar
  11. 11.
    H. Niikura, F. Légaré, R. Hasbani, A.D. Bandrauk, M.Y. Ivanov, D.M. Villeneuve, P.B. Corkum, Nature 417, 917 (2002)Google Scholar
  12. 12.
    H. Niikura, F. Légaré, R. Hasbani, M.Y. Ivanov, D.M. Villeneuve, P.B. Corkum, Nature 421, 826 (2003)Google Scholar
  13. 13.
    M.F. Kling, C. Siedschlag, A.J. Verhoef, J.I. Khan, M. Schultze, T. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M.J.J. Vrakking, Science 312, 246 (2006)Google Scholar
  14. 14.
    X.M. Tong, C.D. Lin, Phys. Rev. Lett. 98, 123002 (2007)Google Scholar
  15. 15.
    A. Staudte, D. Pavičić, S. Chelkowski, D. Zeidler, M. Meckel, H. Niikura, M. Schöffler, S. Schössler, B. Ulrich, P. Rajeev, T. Weber, T. Jahnke, D.M. Villeneuve, A.D. Bandrauk, C.L. Cocke, P.B. Corkum, R. Dörner, Phys. Rev. Lett. 98, 073003 (2007)Google Scholar
  16. 16.
    S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C. ChirilÄ, M. Lein, J.W.G. Tisch, J.P. Marangos, Science 312, 424 (2006)Google Scholar
  17. 17.
    M. Magrakvelidze, F. He, T. Niederhausen, I.V. Litvinyuk, U. Thumm, Phys. Rev. A 79, 033410 (2009)Google Scholar
  18. 18.
    B. Fischer, M. Kremer, T. Pfeifer, B. Feuerstein, V. Sharma, U. Thumm, C.D. Schröter, R. Moshammer, J. Ullrich, Phys. Rev. Lett. 105, 223001 (2010)Google Scholar
  19. 19.
    A. Giusti-Suzor, F.H. Mies, L.F. Dimauro, E. Charron, B. Yang, J. Phys. B Atom. Mol. Opt. Phys. 28, 309 (1995)Google Scholar
  20. 20.
    A.D. Bandrauk, S. Chelkowski, Phys. Rev. Lett. 87, 273004 (2001)Google Scholar
  21. 21.
    A. Palacios, H. Bachau, F. Martín, J. Phys. B Atom. Mol. Opt. Phys. 38, L99 (2005)Google Scholar
  22. 22.
    A. Palacios, S. Barmaki, H. Bachau, F. Martín, Phys. Rev. A 71, 063405 (2005)Google Scholar
  23. 23.
    F. He, C. Ruiz, A. Becker, Phys. Rev. Lett. 99, 083002 (2007)Google Scholar
  24. 24.
    C. Calvert, W. Bryan, W. Newell, I.D. Williams, Phys. Rep. 491, 1 (2010)Google Scholar
  25. 25.
    S. Gräfe, M.Y. Ivanov, Phys. Rev. Lett. 99, 163603 (2007)Google Scholar
  26. 26.
    F. Martín, J. Fernández, T. Havermeier, L. Foucar, T. Weber, K. Kreidi, M. Schöffler, L. Schmidt, T. Jahnke, O. Jagutzki, A. Czasch, E.P. Benis, T. Osipov, A.L. Landers, A. Belkacem, M.H. Prior, H. Schmidt-Böcking, C.L. Cocke, R. Dörner, Science 315, 629 (2007)Google Scholar
  27. 27.
    A. Scrinzi, M.Y. Ivanov, R. Kienberger, D.M. Villeneuve, J. Phys. B Atom. Mol. Opt. Phys. 39, R1 (2006)Google Scholar
  28. 28.
    R. Kienberger, M. Uiberacker, M.F. Kling, F. Krausz, J. Mod. Opt. 54, 1985 (2007)Google Scholar
  29. 29.
    M.F. Kling, M.J.J. Vrakking, Ann. Rev. Phys. Chem. 59, 463 (2008)Google Scholar
  30. 30.
    T. Pfeifer, M.J. Abel, P.M. Nagel, A. Jullien, Z.H. Loh, M. Justine Bell, D.M. Neumark, S.R. Leone, Chem. Phys. Lett. 463, 11 (2008)Google Scholar
  31. 31.
    F. Krausz, M.Y. Ivanov, Rev. Mod. Phys. 81, 163 (2009)Google Scholar
  32. 32.
    X.M. Tong, P. Ranitovic, C.L. Cocke, N. Toshima, Phys. Rev. A 81, 021404(R) (2010)Google Scholar
  33. 33.
    L.V. Keldysh, Sov. Phys. JETP 20, 1037 (1965)Google Scholar
  34. 34.
    F. He, A. Becker, U. Thumm, Phys. Rev. Lett. 101, 213002 (2008)Google Scholar
  35. 35.
    N. Takemoto, A. Becker, Phys. Rev. Lett. 105, 203004 (2010)Google Scholar
  36. 36.
    J. Mauritsson, P. Johnsson, E. Gustafsson, A. LHuillier, K.J. Schafer, M.B. Gaarde, Phys. Rev. Lett. 97, 013001 (2006)Google Scholar
  37. 37.
    P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H.G. Muller, P. Agostini, Science 292, 1689 (2001)Google Scholar
  38. 38.
    S. Aseyev, Y. Ni, L. Frasinski, H. Muller, M. Vrakking, Phys. Rev. Lett. 91, 223902 (2003)Google Scholar
  39. 39.
    E. Foumouo, P. Antoine, H. Bachau, B. Piraux, New J. Phys. 10, 025017 (2008)Google Scholar
  40. 40.
    K. Ishikawa, Y. Kawazura, K. Ueda, J. Mod. Opt. 57, 999 (2009)Google Scholar
  41. 41.
    M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P.B. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)Google Scholar
  42. 42.
    F.H.M. Faisal, J. Phys. B Atom. Mol. Opt. Phys. 6, L89 (1973)Google Scholar
  43. 43.
    M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)Google Scholar
  44. 44.
    J. Itatani, F. Quéré, G. Yudin, M.Y. Ivanov, F. Krausz, P.B. Corkum, Phys. Rev. Lett. 88, 173903 (2002)Google Scholar
  45. 45.
    V. Yakovlev, F. Bammer, A. Scrinzi, J. Mod. Opt. 52, 395 (2005)Google Scholar
  46. 46.
    A. Palacios, H. Bachau, F. Martín, Phys. Rev. A 74, 031402(R) (2006)Google Scholar
  47. 47.
    J.F. Pérez-Torres, J.L. Sanz-Vicario, H. Bachau, F. Martín, J. Phys. B Atom. Mol. Opt. Phys. 43, 015204 (2010)Google Scholar
  48. 48.
    S. Gräfe, V. Engel, M.Y. Ivanov, Phys. Rev. Lett. 101, 103001 (2008)Google Scholar
  49. 49.
    P.H. Bucksbaum, A. Zavriyev, H.G. Muller, D.W. Schumacher, Phys. Rev. Lett. 64, 1883 (1990)Google Scholar
  50. 50.
    M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G.A. Reider, P.B. Corkum, F. Krausz, Science 291, 1923 (2001)Google Scholar
  51. 51.
    J. Mauritsson, P. Johnsson, E. Mansten, M. Swoboda, T. Ruchon, A. LHuillier, K.J. Schafer, Phys. Rev. Lett. 100, 073003 (2008)Google Scholar
  52. 52.
    P. Johnsson, J. Mauritsson, T. Remetter, A. LHuillier, K.J. Schafer, Phys. Rev. Lett. 99, 233001 (2007)Google Scholar
  53. 53.
    K.P. Singh, F. He, P. Ranitovic, W. Cao, S. De, D. Ray, S. Chen, U. Thumm, A. Becker, M.M. Murnane, H.C. Kapteyn, I.V. Litvinyuk, C.L. Cocke, Phys. Rev. Lett. 104, 023001 (2010)Google Scholar
  54. 54.
    P. Ranitovic, X.M. Tong, B. Gramkow, S. De, B. DePaola, K.P. Singh, W. Cao, M. Magrakvelidze, D. Ray, I.A. Bocharova, H. Mashiko, A.S. Sandhu, E. Gagnon, M.M. Murnane, H.C. Kapteyn, I.V. Litvinyuk, C.L. Cocke, New J. Phys. 12, 013008 (2010)Google Scholar
  55. 55.
    P. Rivière, O. Uhden, U. Saalmann, J. Rost, New J. Phys. 11, 053011 (2009)Google Scholar
  56. 56.
    P. Rivière, C. Ruiz, J. Rost, Phys. Rev. A 77, 033421 (2008)Google Scholar
  57. 57.
    F. Morales, J.F. Pérez-Torres, J.L. Sanz-Vicario, F. Martín, Chem. Phys. 366, 58 (2009)Google Scholar
  58. 58.
    U. Fano, Phys. Rev. 124, 1866 (1961)Google Scholar
  59. 59.
    H. Feshbach, Ann. Phys. 19, 287 (1962)Google Scholar
  60. 60.
    F. Martín, J. Phys. B Atom. Mol. Opt. Phys. 32, R197 (1999)Google Scholar
  61. 61.
    K. Ito, R.I. Hall, M. Ukai, J. Chem. Phys. 104, 8449 (1996)Google Scholar
  62. 62.
    Z.X. He, J.N. Cutler, S.H. Southworth, L.R. Hughey, J.A.R. Samson, J. Chem. Phys. 103, 3912 (1995)Google Scholar
  63. 63.
    C.J. Latimer, J. Geddes, M.A. McDonald, N. Kouchi, K.F. Dunn, J. Phys. B Atom. Mol. Opt. Phys. 29, 6113 (1996)Google Scholar
  64. 64.
    G. Sansone, F. Kelkensberg, J.F. Pérez-Torres, F. Morales, M.F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lépine, J.L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. LHuillier, M.Y. Ivanov, M. Nisoli, F. Martín, M.J.J. Vrakking, Nature 465, 763 (2010)Google Scholar
  65. 65.
    D. Dowek, J.F. Pérez-Torres, Y.J. Picard, P. Billaud, C. Elkharrat, J.C. Houver, J.L. Sanz-Vicario, F. Martín, Phys. Rev. Lett. 104, 233003 (2010)Google Scholar
  66. 66.
    G. Sansone, F. Kelkensberg, F. Morales, J. Pérez-Torres, F. Martín, M. Vrakking, IEEE J. Sel. Top. Quant. Electron. 18, 520 (2012)Google Scholar
  67. 67.
    I. Sánchez, F. Martín, Phys. Rev. Lett. 79, 1654 (1997)Google Scholar
  68. 68.
    I. Sánchez, F. Martín, Phys. Rev. A 57, 1006 (1998)Google Scholar
  69. 69.
    F. Kelkensberg, C. Lefebvre, W. Siu, O. Ghafur, O. Atabek, A. Keller, V.V. Serov, P. Johnsson, M. Swoboda, T. Remetter, A.L. Huillier, S. Zherebtsov, G. Sansone, E. Benedetti, F. Ferrari, Phys. Rev. Lett. 103, 123005 (2009)Google Scholar
  70. 70.
    A. Rudenko, T. Ergler, B. Feuerstein, K. Zrost, C.D. Schröter, R. Moshammer, J. Ullrich, Chem. Phys. 329, 193 (2006)Google Scholar
  71. 71.
    F. Kelkensberg, W. Siu, J.F. Pérez-Torres, F. Morales, G. Gademann, A. Rouzée, P. Johnsson, M. Lucchini, F. Calegari, J. Sanz-Vicario, F. Martín, M. Vrakking, Phys. Rev. Lett. 107, 043002 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paula Rivière
    • 1
  • Alicia Palacios
    • 1
  • Jhon Fredy Pérez-Torres
    • 1
  • Fernando Martín
    • 1
    • 2
  1. 1.Departamento de Química, Módulo 13Universidad Autónoma de MadridMadridSpain
  2. 2.Instituto Madrileño de Estudios Avanzados en NanocienciaMadridSpain

Personalised recommendations