Skip to main content

Traditional Application of Stable and Radioactive Isotopes

  • Chapter
  • First Online:
Isotopes in Condensed Matter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 162))

  • 853 Accesses

Abstract

This chapter reviews the applications of isotopetronics in different modern technologies and science. It is briefly describes the application of stable isotopes. This chapter describes the new reactor technology-neutron transmutation doping (NTD), capture of thermal neutrons by isotope nuclei followed by nuclear decay produces new elements, resulting in a number of possibilities for isotope selective doping of solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Meese, (ed.), Neutron Transmutation Doping in Semiconductors (Plenum Press, New York, 1979)

    Google Scholar 

  2. M.A. Krivoglaz, Theory of Scattering X-rays and Thermal Neutrons by Real Crystals (Science, Moscow, 1967) (in Russian)

    Google Scholar 

  3. G. Dolling, in Dynamical Properties of Solids, ed. by G.K. Horton, A.A. Maradudin (North-Holand, Amsterdam, 1974)

    Google Scholar 

  4. B. Dorner, Inelastic Neutron Scattering in Lattice Dynamics, Springer Tracts in Modern Physics, vol. 93. (Berlin, Springer, 1982)

    Google Scholar 

  5. V.G. Plekhanov, Isotope effect in lattice dynamics. Physics Uspekhi 46, 689–715 (2003)

    CAS  Google Scholar 

  6. J.M. Meese, in Neutron Transmutation Doping in Semiconductors, ed. by J.M. Meese (New York-London, Plenum Press, 1979), pp. 1–10

    Google Scholar 

  7. V.G. Plekhanov, Applications of isotope effecr in solids. J. Mater. Sci. 38, 3341–3429 (2003)

    CAS  Google Scholar 

  8. D.E. Cullen, P.J. Hlavac, ENDF/B Cross Sections (Brookhaven National Laboratory, New York, 1972)

    Google Scholar 

  9. L.S. Smirnov (ed.), Semiconductors Doped by Nuclear Reactions, (Science, Novosibirsk, 1981) (in Russian)

    Google Scholar 

  10. D. De Soete, Neutron Activation Analysis (Wiley, New York, 1971)

    Google Scholar 

  11. K.N. Mukhin, Introduction in Nuclear Physics (Atomizdat, Moscow, 1965) (in Russian)

    Google Scholar 

  12. M. Tanenbaum, A.D. Mils, Preparation of uniform resistivity n-type silicon by nuclear transmutation. J. Electrochem. Soc. 108, 171–174 (1961)

    Google Scholar 

  13. M.S. Snöller, IEEE Trans. Electron. Devices ED-21 313 (1974)

    Google Scholar 

  14. W. Haas, M.S. Snöller, Phosphorus doping of silicon by means of neutron irradiation. J. Electron. Mater. 5, 57–68 (1976)

    Google Scholar 

  15. D.S. Billington, J.H. Crawford, Jr., Radiation Damage in Solids, Chap. 2 (Princeton University Press, Princeton, 1961)

    Google Scholar 

  16. V.S. Vavilov, Influence of Radiation on the Semiconductors, (Science, Moscow, 1963) (in Russian)

    Google Scholar 

  17. E.E. Haller, Isotopically engineered seniconductore. J. Appl. Phys. 77, 2857–2878 (1995)

    CAS  Google Scholar 

  18. E.E. Haller, N.P. Palaio, M. Rodder, W.L. Hansen, E. Kreysa, NTD Germanium: A Novel Material for Low Temperature Bolometers, in ed. by R.L. Larrabee, Neutron Transmutation Doping of Semiconductor Materials, (Plenum Press, New York, 1984), pp. 21–36

    Google Scholar 

  19. K.M. Itoh, E.E. Haller, J.W. Beeman, W.L. Hansen, Hopping conduction and metal-insulator transition in isotopically enriched neutron-transmutation-doped \(^{70}\)Ge:Ga. Phys. Rev. Lett. 77, 4058–4061 (1996)

    CAS  Google Scholar 

  20. I. Schlimak, M. Kaveh, R. Ussyshkin et al., Determination of the critical conductivity exponent for the metal - insulator transition at nonzero temperatures: universality of the transition. Phys. Rev. Lett. 77, 1103–1106 (1996)

    Google Scholar 

  21. I. Schlimak, Neutron transmutation doped semiconductors: science and applications. Fiz. Tverd. Tela. 41, 794–798 (1999) (in Russian)

    Google Scholar 

  22. R. Rentzsch, A.N. Ionov, Ch. Reich, V. Ginodman, I. Schlimak, Influence of the disorder germanium changed by compensation on the critical indices of the metal-insulator transition. Fiz. Tverd. Tela. (St. Petersburg) 41, 837–840 (1999)

    Google Scholar 

  23. A.N. Ionov, M.N. Matveev, D.V. Shmik, Determination of the caefficients of neutron transmutation doped germanium. J. Techn. Phys. (St.Petersburg) 59, 169–170 (1989) (in Russian)

    Google Scholar 

  24. I. Schlimak, A.N. Ionov, R. Rentzsch, J.M. Lazebnik, On the doping of isotopically controlled germanium by nuclear transmutation with a high concentration of shallow donor impurities. Semicond. Sci. Technol. 11, 1826–1830 (1996)

    Google Scholar 

  25. H.C. Schweinler, Some consequences of thermal neutron capture in silicon and germanium. J. Appl. Phys. 30, 1125–1126 (1959)

    CAS  Google Scholar 

  26. J. Guldberg (ed.), Neutron-Transmutation-Doped Silicon (Plenum Press, New York, 1981)

    Google Scholar 

  27. C.M. Lederer, J.M. Hollander, I. Perlman (eds.), Table of Isotopes, 6th edn. (Wiley, New York, 1967)

    Google Scholar 

  28. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors: Solid State Series, vol. 45 (Springer, Berlin, 1984)

    Google Scholar 

  29. E.E. Haller, W.L. Hansen, F.S. Goulding, Physics of ultra-pure germanium. Adv. Phys. 30, 93–138 (1981)

    CAS  Google Scholar 

  30. H. Fritzsche, The Metal Non-Metal transition in Disordered Systems, ed. by L.R. Friedman, D.P. Tunstall, Scotish Universities Summer School in Physics, (St. Andrews, Scotland, 1978)

    Google Scholar 

  31. N.F. Mott, Metal-Insulator Transition, 2nd edn. (Taylor and Francis, London, 1990)

    Google Scholar 

  32. N.F. Mott, Electrons in disordered structures. Adv. Phys. 50, 865–945 (2001)

    Google Scholar 

  33. P.A. Lee, T.V. Ramakrishnan, Disordered electronic systems. Rev. Mod. Phys. 57, 287–336 (1985)

    CAS  Google Scholar 

  34. R. Rentzsch, A.N. Ionov, Ch. Reich, A. Müller, The scaling bahaviour of the metal-insulator transition of isotopically engineered neutron-transmutation-doped germanium. Phys. Stat. Solidi (b) 205, 269 (1998)

    Google Scholar 

  35. T.F. Rosenbaum, K. Andres, G.A. Thomas, F.N. Bhatt, Sharp metal-insulator transition in a random solid. Phys. Rev. Lett. 45, 1723–1726 (1980)

    CAS  Google Scholar 

  36. P.F. Newman, D.F. Holcomb, Phys. Rev. B28, 638 (1983)

    Google Scholar 

  37. Metal-insulator transition in a double-donor system, Si:P, As. Phys. Rev. Lett. 51, 2144–2147 (1983)

    Google Scholar 

  38. W.N. Shafarman, D.W. Koon, T.G. Castner, dc conductivity of arsenic-doped silicon near metal-insulator transition. Phys. Rev. B 40, 1216–1231 (1989)

    CAS  Google Scholar 

  39. A.N. Ionov, M.J. Lea, R. Rentzsch, Metal-insulator transition in neutron transmutation doped n-type germanium. JETP Lett. (Mosc.) 54, 470–473 (1991)

    CAS  Google Scholar 

  40. P. Dai, Y. Zhang, M.P. Sarachik, Critical conductivity exponent for Si:B. Phys. Rev. Lett. 66, 1914–1917 (1991)

    CAS  Google Scholar 

  41. G.A. Thomas, Y. Ootuka, S. Katsumoto, S. Kobayashi, W. Sasaki, Evidence for localization effects in compensated semiconductors. Phys. Rev. B 25, 4288–4290 (1982)

    CAS  Google Scholar 

  42. M.J. Hirsch, U. Thomanschefsky, D.F. Holcomb, Critical behavior of the zero-temperature conductivity in compensated silico, Si:(P, B). Phys. Rev. B 37, 8257–8261 (1988)

    CAS  Google Scholar 

  43. A.G. Zabrodskii, K.N. Zinov’eva, Sov. Phys. JETP 59, 425 (1984)

    Google Scholar 

  44. M. Rohde, H. Micklitz, Indication of universal behavior of Hall conductivity near metal-insulator transition in disordered systems. Phys. Rev. B 36, 7572–7575 (1987)

    CAS  Google Scholar 

  45. G. Hertel, D.J. Bishop, E.G. Spencer, R.C. Dynes, Tunneling and transport measurements at the metal-insulator transition of amorphous Nb:Si. Phys. Rev. Lett. 50, 743–746 (1983)

    CAS  Google Scholar 

  46. W.L. McMillan, J. Mochel, Electron tunneling experiments on amorphous Ge\(_{1-x}\)Au\(_{x}\). Phys. Rev. Lett. 46, 556–557 (1981)

    CAS  Google Scholar 

  47. Th Zint, M. Rohde, H. Micklitz, Metal-insulator transition in amorphous Ga–Ar mixtures: critical exponents of electrical transport parameters and behavior of superconductivity. Phys. Rev. B 41, 4831–4833 (1990)

    CAS  Google Scholar 

  48. E.W. Hass, M.S. Schnöller, Phosphorous doping of silicon by means of neutron irradiation. IEEE Trans. Electron Dev. ED 23, 803–805 (1976)

    Google Scholar 

  49. N.F. Mott, The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. (Lond.) A 62, 416–425 (1949)

    Google Scholar 

  50. P.W. Anderson, Absence of diffusion in certain random. Phys. Rev. 109, 1492–1505 (1958)

    CAS  Google Scholar 

  51. A. MacKinnon, B. Kramer, One-parameter scaling of localization length and conductance in disordered systems. Phys. Rev. Lett. 47, 1546–1549 (1981)

    Google Scholar 

  52. M. Henneke, B. Kramer, T. Ohtsuki, Localization length and conductance in disordered systems. Europhys. Lett. 27, 389–392 (1994)

    CAS  Google Scholar 

  53. E. Hafstetter, M. Schreiber, Does broken time reversal symmetry modify the critical behavior at the metal-insulator transition in 3-dimensional disordered systems? Phys. Rev. Lett. 73, 3137–3140 (1994)

    Google Scholar 

  54. T. Kawarabayashi, T. Ohtsuki, K. Slevin, Y. Ono, Anderson transition in three-dimensional disordered systems with symplectic symmetry. Phys. Rev. Lett. 77, 3593–3596 (1996)

    CAS  Google Scholar 

  55. J. Chang, M.M. Dacorogna, M.L. Cohen, Superconductivity in high-pressure metallic phases of Si. Phys. Rev. Lett. 54, 2375–2378 (1985)

    CAS  Google Scholar 

  56. R.D. Larrabee (ed.), Neutron Transmutation Doping of Semiconductor Materials (Plenum Press, New York, 1984)

    Google Scholar 

  57. A.N. Ionov, I.S. Shlimak, M.N. Matveev, An experimental determination of the critical exponents at the metal-insulator transition. Solid State Commun. 47, 763–766 (1983)

    CAS  Google Scholar 

  58. D. Chattopadhyay, H.J. Queisser, Electron scattering by ionized impurities in semiconductors. Rev. Mod. Phys. 53, 745–768 (1981)

    CAS  Google Scholar 

  59. V.G. Plekhanov, Isotope engineering, Phys. Uspekhi (Mosc.) 170, 1147–1152 (2000) (in Russian)

    Google Scholar 

  60. K. Itoh, W.L. Hansen, E.E. Haller, J.W. Farmer, V.I. Ozhogin, in Proceedings of the 5th International Conference on Shallow Levels in Semiconductors, Kobe, Japan, 1992

    Google Scholar 

  61. H.D. Fuchs, K.M. Itoh, E.E. Haller, Isotopically controlled germanium: a new medium for the study of carrier scattering by neutral impurities. Philos. Mag. B 70, 661–670 (1994)

    CAS  Google Scholar 

  62. W. von Ammon, Neutron transmutation doped silicon-technologica and economic aspects. Nucl. Instrum. Methods B 63, 95–100 (1992)

    Google Scholar 

  63. K.M. Itoh, W. Walukiewicz, H.D. Fuchs, J.W. Beeman, E.E. Haller, V.I. Ozhogin, Neutral-impurity scattering in isotopically engineered Ge. Phys. Rev. B 50, 16995–17000 (1994)

    CAS  Google Scholar 

  64. K. Itoh, W.L. Hansen, V.I. Ozhogin et al., High-purity isotopically enriched \(^{70}\)Ge and \(^{74}\)Ge single crystals: isotope separation, purification and growth. J. Mater. Res. 8, 1341–1347 (1993)

    CAS  Google Scholar 

  65. C. Erginsoy, Neutral impurity scattering in semiconductors. Phys. Rev. 79, 1013–1014 (1950)

    CAS  Google Scholar 

  66. A.I. Ansel’m, Influence resonant scattering of the charges on the impurity centres on the electrical properties of semiconductors, Zh. Eksp. Teor. Fiz. (Mosc.), 24, 83–89 (1953) (in Russian)

    Google Scholar 

  67. N. Sclar, Neutral impurity scattering in semiconductors. Phys. Rev. 104, 1559–1561 (1956)

    CAS  Google Scholar 

  68. N. Sclar, Ionized impurity scattering in nondegenerate semiconductors, 104, 1548–1558 (1956)

    Google Scholar 

  69. T.C. McGill, R. Baron, Neutral impurity scattering in semiconductors. Phys. Rev. B 11, 5208–5210 (1975)

    Google Scholar 

  70. B.K. Ridley, Quantum Process in Semiconductors, 3\(^{rd}\) ed (Clarendon Press, Oxford, 1993)

    Google Scholar 

  71. R.D. Dingle, Scattering of electrons and holes by charged donors and acceptors in semiconductors, Philos. Mag. 46831–46840 (1955)

    Google Scholar 

  72. H. Brooks, Theory of the electrical properties of germanium and silicon. Adv. Electron. Electron Phys. 7, 85–182 (1955)

    CAS  Google Scholar 

  73. W. Shockley, Electrons and Holes in Semiconductors (Van Nostrand Reinhold, Princeton, 1950)

    Google Scholar 

  74. J. Blakemore, Semiconductor Statistics, 2nd edn. (Dover, New York, 1985)

    Google Scholar 

  75. V.G. Dzhakeli, Z.S., Kachlishvili, To the theory of acattering on neutral impurity atoms. Sov. Phys. Semicond. 18, 1482–1484 (1984)

    Google Scholar 

  76. B.J. Baliga, Neutron transmutation doped silicon for power semiconductor devices, in Neutron Transmutation Doping of Semiconductor Materials, ed. by R.D. Larrabeeed, (Plenum Press, New York, 1984), pp. 167–180

    Google Scholar 

  77. J.W. Farmer, J.C. Nugent, Transient current spectroscopy of neutron irradiated silicon, in Neutron Transmutation Doping of Semiconductor Materials, ed. by R.D. Larrabee, (Plenum Press, New York, 1984) pp. 225–240

    Google Scholar 

  78. K. Lark-Horowitz, Bombardment semiconductors by nuclons, in Proceedings Conference on semiconductor materials, ed. by H.K. Henish (Butterworth, London, 1951) pp. 47–79

    Google Scholar 

  79. M.J. Hill, P.M. van Iseghem, W. Zimmerman, Preparartion and application of neutron transmutation doped silicon for power device research, IEEE Trans. Electron Device ED 23, 809–813 (1976)

    Google Scholar 

  80. J. Messier, Y. le Corroler, J.M. Flores, Thick junctions made with nuclear compensated silicon. IEEE Trans. Nucl. Sci. NS - 11, 276–279 (1964)

    CAS  Google Scholar 

  81. H.M. James, O. Malmros, Application of thermal neutron irradiation for large scale production of homogeneous phosphorous doping of floatzone silicon. IEEE Trans. Electron Devices ED 23, 797–802 (1976)

    Google Scholar 

  82. P.V. van Iseghem, p-i-n epitaxial structures forhigh power devices. IEEE Trans. Electron Devices ED 23, 823–825 (1976)

    Google Scholar 

  83. International Atomic Energy Agency Regulations for the Safe Transport of Radioactive Materials, Rev. Ed., 1973, p. 8

    Google Scholar 

  84. H. Hamanaka, K. Kuriyama, M. Yahagi et al., Doping of phosphorus in hydrogenated amorphous silicon by a neutron transmutation doping technique. Appl. Phys. Lett. 45, 786–788 (1984)

    CAS  Google Scholar 

  85. D.W. Koon, T.G. Castner, Does the Hall coefficient exhibit critical behavior approaching the metal-insulator transition? Phys. Rev. Lett. 60, 1755–1758 (1988)

    CAS  Google Scholar 

  86. P. Dai, Y. Zhang, M.P. Sarachik, Critical behavior of the Hall coefficient of Si:P at the metal-insulator transition. Phys. Rev. B 49, 14039–14042 (1994)

    CAS  Google Scholar 

  87. H. Grussbach, M. Schreiber, Determination of the mobility edge in the Anderson model of localization in three dimensions by multifractal analysis. Phys. Rev. B 51, 663–666 (1995)

    CAS  Google Scholar 

  88. P. Dai, Y. Zhang, M.P. Sarachik, Critical behavior of the Hall coefficient of Si:B. Phys. Rev. Lett. 70, 1968–1971 (1993)

    CAS  Google Scholar 

  89. S.B. Field, T.F. Rosenbaum, Critical behavior of the Hall conductivity at the metal-insulator transition. Phys. Rev. Lett. 55, 522–524 (1985)

    CAS  Google Scholar 

  90. M.H. Young, A.T. Hunter, R. Baron, O.I. Marsch, Neutron transmutation doping of p-type Czochralski–Grown galliuym arsenide, in Neutron Transmutation Doping of Semiconductor Materials, ed. by R.D. Larrabee (Plenum Press, New York, 1984), pp. 1–20

    Google Scholar 

  91. R. Rentzsch, K.J. Friedland, A.N. Ionov, Negative magnetoresistance of neutron transmutation-doped gallium arsenide at vriable-range hopping. Phys. Stat. Solidi (b) 146, 199–206 (1988)

    CAS  Google Scholar 

  92. R. Magerle, A. Burchard, M. Deicher, T. Kerle, Radioactive isotopes in photoluminescence experiments: identification of defect levels. Phys. Rev. Lett. 75, 1594–1597 (1995)

    CAS  Google Scholar 

  93. K. Kuriyama, K. Sakai, LO-phonon and plasmon coupling in neutron-transmutation-doped GaAs. Phys. Rev. B 53, 987–989 (1996)

    CAS  Google Scholar 

  94. K. Kuriyama, Y. Miyamoto, T. Koyama, O. Ogawa, Ion channeling study of the lattice disorder in neutron irradiated GaP. J. Appl. Phys. 86, 2352–2354 (1999)

    CAS  Google Scholar 

  95. K. Kuriyama, K. Ohbora, M. Okada, Photoluminescence from transmuted impurities in neutron-transmutation-doped semi-insulating GaP. Solid State Commun. 113, 415–418 (2000)

    CAS  Google Scholar 

  96. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969)

    Google Scholar 

  97. H. Kressel (ed.), Semiconductor Devices for Optical Communications: Topics in Applied Physice, vol. 39 (Springer, Berlin, 1982)

    Google Scholar 

  98. P.C. Becker, M.R.X. de Barras, in Materials for Optoelectronics, ed. by M. Quilec (Kluver Academic Publishers, Boston, 1996)

    Google Scholar 

  99. A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman and Hall Medical, London, 1996)

    Google Scholar 

  100. D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1972)

    Google Scholar 

  101. W.B. Allan, Fibre Optics Theory and Practice (Plenum Press, New York, 1973)

    Google Scholar 

  102. N.S. Kapany, Fiber Optics (Academic Press, New York, 1967)

    Google Scholar 

  103. J.A. Arnaud, Beam and Fibre Optics (Academic Press, New York, 1976)

    Google Scholar 

  104. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974)

    Google Scholar 

  105. J.E. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979)

    Google Scholar 

  106. V.G. Plekhanov, Applications of the Isotopic Effect in Solids (Springer, Berlin, 2004)

    Google Scholar 

  107. R.W. Pohl, Itroduction into Optics (Science, Moscow, 1947) (in Russian)

    Google Scholar 

  108. L.M. Zhuravleva, V.G. Plekhanov, Method of Fiber’s Manufacture. Patent of Russian Federation N 2302381, 10 July 2007

    Google Scholar 

  109. J. Ruth, The uses of radiotracers in the life sciences. Rep. Prog. Phys. 72, 01670–23 (2009)

    Google Scholar 

  110. L.L. Gol’din, M.F. Lomakov, O.V. Savchenko et al., Application of high energy charged particles in medicine, Uspekhi Phys. (Mosc.) 110, 77–99 (1973) (in Russian)

    Google Scholar 

  111. U. Amaldi, G. Kraft, Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 68, 1861–1882 (2005)

    CAS  Google Scholar 

  112. M.M. Ter-Pogossian, in Positron Emission Tomography, ed. by I. Reivich, A. Alovi (Alan R. Press, New York, 1985)

    Google Scholar 

  113. S.I. Adelstein, F.Y. Manning, Isotopes for Medicine and Life Science (National Academy Press, Washington, 1995)

    Google Scholar 

  114. J. Harbert, A.F.G. de Roche, Textbook of Nuclear Medicine: Basic Science, vol. 1 (Lea and Fetiger, Filadelphia, 1984)

    Google Scholar 

  115. http://www.nupece.org/iai2001/report/B43.pdf

  116. http://www.cbvp.com/nmrc/mia.html

  117. S. - C. Huang, Principles of tracer kinetic modeling in positron emission tomography and autoradiography, in Positron Emission Tomography and Autoradiography: Principles and Applications for the brain and Heart, ed. by M.E. Phelps, M.C. Mazotta, M.R. Schelbert, (Raven, New York, 1986

    Google Scholar 

  118. S.R. Berman, Positron emission tomography of heart in, cardiac nuclear medicine, 3rd edn. in Health Professons Division, ed. by M.C. Gerson (McGraw-Hill, New York, 1997)

    Google Scholar 

  119. P.E. Valk, D.L. Bailey, D.W. Townsend, Positron Emission Tomography: Basic Science and Clinical Practice (Springer, New York, 2004)

    Google Scholar 

  120. H. Bender, H. Palmelo, P.E. Valk, Atlas of Clinical PET in Oncology: PET versus CT and MRI (Springer, New York, 2000)

    Google Scholar 

  121. http://www.vbvp.com/nmrc/nucmed.html

  122. V.G. Plekhanov, Manifestation and Origin of the Isotope Effect, ArXiv, phys/0907.2024 (2009), p. 195

    Google Scholar 

  123. T. Gehrels (ed.), Protostars and Planets (University of Arizona Press, Tuscon, 1978)

    Google Scholar 

  124. G. Wallerstein, I. Jhen Jr, P. Parker, et al., Synthesos of the elements in stars: forty years of progress. Rev. Mod. Phys. 69, 995–1084 (1997)

    CAS  Google Scholar 

  125. S. Esposito, Primordial Nucleosynthesis: Accurate Prediction for Light Element Abundances, ArXiv:astro-ph/ 9904411

    Google Scholar 

  126. W.H. King, Isotope Shift in Atomic Spectra (Plenum, New York, 1984)

    Google Scholar 

  127. V.G. Plekhanov, Isotope-Mixed Crystals: Fundamentals and Applications, Bentham, e-books, 2011. ISBN 978-1-60805-091-8

    Google Scholar 

  128. W.F. Libby, Radiocarbon Dating (University of Chicago Press, Chicago, 1952)

    Google Scholar 

  129. M. Stuiver, C.W. Pearson, High-precision bidecadel calibration of the radiocarbon timescale, Ad 1950–500 BC and 2500–6000 BC. Radiocarbon 35, 1–23 (1993)

    Google Scholar 

  130. M. Stuiver, P.J. Reimer, Extended (super14)C data base and revisited CALIB 3.0 (super 14)C age calibration program, ibid, 35 (N 1) pp. 215–230 (1993)

    Google Scholar 

  131. R.E. Taylor, Radiocarbon Dating: An Archaeological Perspective (Academic Press, New York, 1987)

    Google Scholar 

  132. R.E. Taylor, M.J. Aitken (eds.), Chronometric Dating in Archaeology (Plenum Press, New York, 1997)

    Google Scholar 

  133. E.M.D. Symabalisty, D.N. Schramm, Nucleocosmochronology. Rep. Progr. Phys. 44, 293–328 (1981)

    Google Scholar 

  134. M. Wolfsberg, W.A. van Hook, P. Paneth et al., Isotope Effects: In the Chemical, Geological and Bio Sciences (Springer, Berlin, 2009)

    Google Scholar 

  135. M.J. Aitken, Thermoluminescence (Academic, London, 1985)

    Google Scholar 

  136. M.J. Aitken, Introduction in Optical Dating (Oxford University Press, Oxford, 1985)

    Google Scholar 

  137. M.J. Aitken, C.B. Stinger, P.A. Mellars (eds.), The Origin of Modern Humans and the Impact of Chronometric Dating (Princeton University Press, Princeton, 1993)

    Google Scholar 

  138. M.J. Aitken, Archaelogical dating using physical phenomena. Rep. Progr. Phys. 62, 1333–1376 (1999)

    CAS  Google Scholar 

  139. S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  140. J. Groh, G.V. Hevesey, Ann. Phys. 65, 318 (1920), cited in [135]

    Google Scholar 

  141. G. Schatz, A. Weidinger, J.A. Gardner, Nuclear Condensed Matter (Wiley, New York, 1996)

    Google Scholar 

  142. D. Forkel-Wirth, Exploring solid state physics properties with radioactive isotopes. Rep. Prog. Phys. 62, 527–597 (1999)

    Google Scholar 

  143. D. Forkel-Wirth, M. Deicher, Radioactive isotopes in solid state physics, Nucl. Phys. A 693, 327–341 (2001)

    Google Scholar 

  144. M. Lindros, H. Hass, H. Pattyn et al., Unusually large substitutional fraction for Fr implanted in Fe observed by emission channeling. Nucl. Instrum. Methods B64, 256–260 (1992)

    Google Scholar 

  145. M. Restle, H. Quintel, C. Ronning, Lattice sites of ion implanted Li in diamond. Appl. Phys. Lett. 66, 2733–2775 (1995)

    CAS  Google Scholar 

  146. V.S. Amarel, Microscopic studies of radioactive Mg implanted in YBa\( _{2} \)Cu\(_{3}\)O\(_{6}+x\) superconductor. J. Magn. Magn. Mater. 177-81, 511–512 (1998)

    Google Scholar 

  147. J. Lohmuller, H. Hass, G. Schatz, PAC investigation of \(^{77}{} \longrightarrow ^{77}\)Se on silicon, Hyperfine Interact. 97/98, 203–207 (1996)

    Google Scholar 

  148. H. Granzer, H. Hass, G. Schatz, Magnetic hyperfine fields at Se adatoms on Ni surfaces. Phys. Rev. Lett. 77, 4261–4264 (1996)

    CAS  Google Scholar 

  149. H.H. Bertschat, H. Hass, R. Kowallik, New approach for range measurements of induced magnetic interaction in Pd. Phys. Rev. Lett. 78, 342–345 (1997)

    Google Scholar 

  150. K. Kuriyama, K. Sakai, LO phonon and plasmon coupling in NTD GaAs. Phys. Rev. B 53, 987–989 (1996)

    CAS  Google Scholar 

  151. V.Ju. Baranov, (ed.), Isotopes, vol. 1 and 2 (Fizmatlit, Moscow, 2005) (in Russian)

    Google Scholar 

  152. T. Sekine, K. Uchinokura, E. Marzuura, Two-phonon Raman scattering in GaAs. J. Phys. Chem. Solids 38, 1091–1096 (1977)

    CAS  Google Scholar 

  153. T. Kawakubo, M. Okada, Electrical and optical properties of neutron-irradiated GaP crystals. J. Appl. Phys. 67, 3111–3116 (1990)

    CAS  Google Scholar 

  154. H. Ahlawadhi, R. Vogelgesang, T.P. Chin, Indirect transitions, free- and impurity-bound excitons in GaP. J. Appl. Phys. 82(N 9), 4331–4335 (1997)

    Google Scholar 

  155. P. Dean, Inter-impurity recombinations in semiconductors. Prog. Solid State Chem. 8, 1–126 (1973)

    CAS  Google Scholar 

  156. YuV Tarbeyev, A.K. Kaliteyevsky, V.I. Sergeyev, Scientific, engineering and metrological problems in producing pure \(^{28}\)Si and growing single crystals. Metrologia 31, 269–273 (1994)

    Google Scholar 

  157. U. Kuegens, P. Becker, X-ray interferometry and practical set-up for calibrated in the microrad range with nanorad resolution. Meas. Sci. Technol. 9(N 8), 1072–1075 (1998)

    Google Scholar 

  158. A.D. Bulanov, G.G. Devyatych, A.V. Gusev et al., The highly isotopic enriched (99.9%) high-pure \(^{28}\)Si single crystal. Cryst. Res. Technol. 35, 1023–1026 (2000)

    CAS  Google Scholar 

  159. P. Becker, History and progress in the accurate determination of the Avogadro constant. Rep. Prog. Phys. 64, 1945–2008 (2001)

    CAS  Google Scholar 

  160. P. Becker, The molar volume of sinle-crystal silicon. Metrologia 38, 85–86 (2001)

    CAS  Google Scholar 

  161. P. Becker, M. Gläser, Avogadro constant and ion accumulation: steps towards a reditermination of the SI unit of mass. Meas. Sci. Technol. 14, 1249–1258 (2003)

    CAS  Google Scholar 

  162. P. Becker, Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal. Metrologia 40, 366–375 (2003)

    CAS  Google Scholar 

  163. I.M. Mills, P.J. Mohr, B.N. Taylor, Redifinition of the kilogram: a decision whose time has come. Metrologia 42, 71–80 (2005)

    Google Scholar 

  164. A. Picard, Mass determination of a 1 kg silicon sphere for the Avogadro project. Metrologia 43, 46–52 (2006)

    CAS  Google Scholar 

  165. P. Becker, O.N. Godisov, P. Taylor, Large-scale production of highly enriched \(^{28}\)Si. Meas. Sci. Technol. 17, 1854–1860 (2006)

    CAS  Google Scholar 

  166. P.J. Mohr, B.N. Taylor, CODATA recomended values of the fundamental physical constants: 1998. Rev. Mod. Phys. 72, 351–495 (2000)

    CAS  Google Scholar 

  167. J.I. Pankove, Optical Processes in Semiconductors (Prentice Hall, Englewood Cliffs, 1971)

    Google Scholar 

  168. J.S. Blakemore, Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123–R181 (1982)

    CAS  Google Scholar 

  169. M. Sze, High Speed Devices (Wiley, New York, 1991)

    Google Scholar 

  170. T. Ihn, Semiconductors Nanostructures: Quantum States and Electronic Transport (Oxford University Press, Oxford, 2009)

    Google Scholar 

  171. S. Lindsay, Introduction to Nanosciences (Oxford University Press, New York, 2009)

    Google Scholar 

  172. M.H. Devoret, R.J. Shoelkopf, Amplifying quantum signals with the single-electron transistor. Nature 406, 1038–1046 (2000)

    Google Scholar 

  173. K. Goser, P. Glösekötter, J. Dienstuhl, Nanoelectronics and Nanosystems (Springer, Berlin, 2004)

    Google Scholar 

  174. M.J. Kelly, Low-Dimensional Semiconductors (Clarendon Press, Oxford, 1995)

    Google Scholar 

  175. H. Grabert (ed.) Single Charge Tunneling (Special Issue), Zs. Physik 85 (N3) (1991)

    Google Scholar 

  176. K. Seeger, Semiconductor Physics (Springer, Wien-New York, 1973)

    Google Scholar 

  177. K. Barnham, D. Vvedensky, Low-Dimensional Semiconductor Structures (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  178. N. Gerasimenko, Ju Parhomenko, Silicon-Material of Nanoelectronics (Moscow, Technosphera, 2007). (in Russian)

    Google Scholar 

  179. A.V. Eletskii, Mechanical properties of carbon nanostructures and related materials. Uspekhi Fiz. Nauk (Mosc.) 177, 233–274 (2007)

    Google Scholar 

  180. H. Grabert, M.H. Devored (eds.), Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, NATO ASI Series B, vol. 294. (Plenum, New York, 1992)

    Google Scholar 

  181. S. Washburn, R.A. Webb, Quantum transport in small disordered samples from the diffuse to the ballistic regime. Rep. Prog. Phys. 55, 1311–1383 (1992)

    CAS  Google Scholar 

  182. D.V. Averin, A.N. Korotkov, K.K. Likharev, Theory of single electron charging of quantum wells and dots. Phys. Rev. 44, 6199–6211 (1991)

    Google Scholar 

  183. M.A. Kastner, The single electron transistor. Rev. Mod. Phys. 64, 849–858 (1992)

    Google Scholar 

  184. J. Bylander, T. Duty, P. Delsing, Current measurement by real-time counting of single electrons. Nature 434, 361–364 (2005)

    CAS  Google Scholar 

  185. D.V. Averin, A.A. Odintsov, S.A. Vyshenski, Ultimate accuracy of single-electron dc current standards. J. Appl. Phys. 73, 1297–1308 (1993)

    CAS  Google Scholar 

  186. Y. Ono, A. Fujiwara, K. Nishiguch et al., Manipulation and detection of single electrons for future information processing. J. Appl. Phys. 97, 031101–031119 (2005)

    Google Scholar 

  187. K. Thyagarajan, A.K. Ghatak (eds.), Lasers Theory and Applications ( Plenum Press, New York, 1982)

    Google Scholar 

  188. O. Svelto, Principles of Lasers, 2nd edn. (Plenum Press, New York, 1982)

    Google Scholar 

  189. N.V. Karlov, Lectures on Quantum Electronics. (Science, Moscow, 1983) (in Russian)

    Google Scholar 

  190. M.S. Brodin, V. Ya. Reznitchenko, Interactions of the laser intensity radiation with A\(_{2}\)B\(_{6}\) semiconductors, in Physics \(A_{2}\) \(B_{6}\) Compounds, ed. by A.N. Georgabiani and M.K. Sheinkman (Science, Moscow, 1986), pp. 184–225 (in Russian)

    Google Scholar 

  191. A.J. Taylor, D.J. Erskine, C.L. Tang, Ultrafast relaxation of photoexcited carriers in GaAs and related compounds. J. Opt. Soc. Am. (B) 2, 663–673 (1985)

    CAS  Google Scholar 

  192. J.A. Kash, J.C. Tsang, in Light Scattering in Solids, Vol. 6, ed. by M. Cardona, G. Güntherodt (Springer, Berlin, 1991), pp. 423–467

    Google Scholar 

  193. W.P. Dumke, Interband transitions and maser action. Phys. Rev. 127, 1559–1563 (1962)

    CAS  Google Scholar 

  194. R.E. Nahory, K.L. Shakley, R.F. Leheny, R.A. Logan, Indirect-band-gap super-radiant laser in GaP containing isoelectronic traps. Phys. Rev. Lett. 27, 1647–1650 (1971)

    CAS  Google Scholar 

  195. H. Kressel, in Laser Handbook, Chap. B5, ed. by F.T. Arechi, E.O. Schulz-Dubois (North-Holland, Amsterdam, 1972), p. 271--319

    Google Scholar 

  196. F. Stern, ibid, Chap. B4

    Google Scholar 

  197. C. Klingshirn, Lasers processes in semiconductors, in Spectr. Solid-State Laser Type Matter. (Proc. Course Enrico Fermi, Erice, 1987), pp. 485–501

    Google Scholar 

  198. C.A. Klein, Further remarks on electron beam pumping lasers materials. Appl. Optics 5, 1922–1924 (1966)

    CAS  Google Scholar 

  199. C.A. Klein, Power efficiency and quantum efficiencies of electron-beam pumped lasers, IEEE QE 4, 186–194 (1968)

    Google Scholar 

  200. H. Haug, Theory of laser action involving free excitons and LO-phonon-assisted transitions. J. Appl. Phys. 39, 4687–4696 (1968)

    CAS  Google Scholar 

  201. H. Haug, Nonlinear optical phenomena and bistability in semiconductors. Adv. Solid State Phys. 22, 149–171 (1982)

    Google Scholar 

  202. H. Haug, S. Koch, On the theory of laser action in dense exciton systems. Phys. Stat. Solidi (b) 82, 531–543 (1977)

    CAS  Google Scholar 

  203. K.C. Liu, R.L. Liboff, Criterion for exciton lasing in pure crystals. J. Appl. Phys. 54, 5633–5637 (1983)

    CAS  Google Scholar 

  204. R.S. Knox, Theory of Excitons (Academic Press, New York, 1963)

    Google Scholar 

  205. E.F. Gross, Selected Papers (Science, Leningrad, 1976) (in Russian)

    Google Scholar 

  206. D.G. Thomas (ed.), II–VI Semiconducting Compounds (Benjamin, New York, 1967)

    Google Scholar 

  207. N.G. Basov, O.V. Bogdankevich, A.G. Devyatkov, Sov. Phys. JETP 20, 1902 (1964)

    Google Scholar 

  208. N.G. Basov, O.V. Bogdankevich, A.G. Devyatkov Sov, Phys. Solid State 8, 1221 (1966)

    Google Scholar 

  209. J.R. Packard, D.A. Campbell, W.C. Tait, Evidence for indirect annihilation of free excitons in II–VI semiconductor lasers. J. Appl. Phys. 38, 5255–5258 (1967)

    CAS  Google Scholar 

  210. C. Benoit a la Guilaume, J.M. Debever, F. Salvan, in II–VI Semiconducting Compounds, ed. by D.G. Thomas (Benjamin, New York, 1967), p. 609

    Google Scholar 

  211. C. Benoit a la Guilaume, J.M. Debever, F. Salvan, Radiative recmbination in highly excited CdS. Phys. Rev. 177, 567–580 (1969)

    Google Scholar 

  212. L.A. Kulevsky, A.M. Prokhorov, The nature of the laser transition in CdS vrystal at 90K with two-photon excitaion. IEEE QE 2, 584–586 (1966)

    Google Scholar 

  213. M.S. Brodin, K.A. Dmitrenko, S.G. Shevel, L.V. Taranenko, The temperature dependence of laser threshold in CdS single crystals under one-photon excitation. in Proceedings of the International Conference on Lasers?82 (STS Press, USA, 1983), pp. 287–291

    Google Scholar 

  214. M.S. Brodin, S.V. Zakrevski, V.S. Mashkevich, V. Ya, Reznitchenko, On mechanism of generation of laser radiation in CdS\(_{x}\)CdSe\(_{1-x}\) crystals in case of two-photon excitation. Sov. Phys. Semicond. 1, 595–597 (1967)

    CAS  Google Scholar 

  215. V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Prog. Mater. Sci. 51, 281–426 (2006)

    Google Scholar 

  216. V.G. Plekhanov, Resonant secondary emission spectra and some peculiarities of relaxation processes in crystals with self-trapping excitons, in Proceedings of the International Conference on LASERS’80 (McClean, STS, 1981), pp. 91–99

    Google Scholar 

  217. K. Takiyama, M.I. Abd-Elrahman, T. Fujita, T. Okada, Photolumonescence and decay kinetics of indirect free excitons in diamonds under the near-resonant laser excitation. Solid State Commun. 99, 793–796 (1996)

    CAS  Google Scholar 

  218. V.G. Plekhanov, V.I. Altukhov, Free exciton luminescence and exciton-phonon interactions parameters of wide-gap insulators, in Proceedings of the International Conference on LASERS’82 (McClean, STS, 1983), pp. 292–299

    Google Scholar 

  219. C. Klingshirn, H. Haug, Optical properties of highly excited direct gap semiconductors. Phys. Reports 70, 315–398 (1981)

    CAS  Google Scholar 

  220. V.G. Plekhanov, Wannier–Mott excitons in isotope-disordered crystals. Rep. Prog. Phys. 61, 1045–1098 (1998)

    CAS  Google Scholar 

  221. V.G. Plekhanov, Comparative study of isotope and chemical effects on the exciton states in LiH crystals. Prog. Solid State Chem. 29, 71–177 (2001)

    CAS  Google Scholar 

  222. V.G. Plekhanov, Changes in spectra of luminescence and Raman scattering of ithium hydride uner growth in the excitation intensity. Quantum Electron. (Mosc.) 16, 2156–2159 (1989) (in Russian)

    Google Scholar 

  223. H.C. Casey, M.B. Panish, Heterostructure Lasers (Academic Press, New York, 1978)

    Google Scholar 

  224. P.S. Zoty, Quantum Well Lasers (Academic Press, Boston, 1993)

    Google Scholar 

  225. L.A. Colderen, S.W. Corzine, Diode Lasers and Photonic Integrated Cicuits (Wiley, New York, 1995)

    Google Scholar 

  226. V.M. Ustinov, A.E. Zukov, A.Y. Egorov, N.A. Maleen, Quantum Dot Lasers (Oxford University Press, Oxford, 2003)

    Google Scholar 

  227. P. Michler (ed.), Single Semiconductor Quantum Dots (Springer, Berlin, 2009)

    Google Scholar 

  228. N.N. Ledentsov, V.M. Ustinov, V.A. Shchukin et al., Quantum dot heterostructures: fabrication, properties, lasers. Fiz. Teh. Polup. (Phys. Tech. Semicond.) 32, 385–410 (1998) (in Russian)

    Google Scholar 

  229. L. Sirigu, D.Y. Oberli, L. Deriorgi et al., Excitonic lasing in semiconductor quantum wires. Phys. Rev. B61, R10575–4 (2000)

    Google Scholar 

  230. F. Rossi, E. Molinari, Linear and nonlinear optical properties of realistic quantum-wire structures: the dominant role of Coulomb correlation. Phys. Rev. B53, 16462–16473 (1996)

    Google Scholar 

  231. F. Rossi, G. Goldoni, E. Molinari, Theory of excitonic confinement in semiconductor quantum wires. J. Phys. Condens. Matter 11, 5969–5988 (1999)

    CAS  Google Scholar 

  232. D. Bimberg, M. Grundman, N.N. Ledentsov, Quantum Dot Heterostructure (Wiley, Chichester, 1999)

    Google Scholar 

  233. J.M. Martinez-Duart, R.J. Martin-Palma, F. Agullo-Rueda, Nanotechnology for Microelectronics and Optoelectronics, (Elsevier, Amsterdam, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Plekhanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plekhanov, V. (2013). Traditional Application of Stable and Radioactive Isotopes. In: Isotopes in Condensed Matter. Springer Series in Materials Science, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28723-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28723-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28722-0

  • Online ISBN: 978-3-642-28723-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics