Advertisement

Effects Related to Isotopic Disorder in Solids

  • Vladimir Plekhanov
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 162)

Abstract

Interest in diffusion is as old as metallurgy or ceramics. The first measurement of diffusion in the solid state was made by Roberts-Austen [1]. Many measurements, especially of chemical diffusion in metals, were made in the 1930s; the field was reviewed by Jost [2] and Seith [3]. Diffusion research increased after World War II; the increase was motivated by the connection among diffusion, defects and radiation damage and helped by the availability of many artificial radiotracers. These researchers were the first to attempt to identify the basic underlying atomistics mechanisms responsible for mass transport through solids by a quantitative investigations and theoretical analysis of the activation energies required for diffusion by exchange, interstitial and vacancy mechanisms in solids. Prior to this time, there had been little concern with treating diffusional phenomena on a microscopic basis, and most research was concerned with fairly crude observation of overall bulk transfer processes at junctions between regions with strong compositional differences. It was at this time that suggestions on how to carry out high precision, highly reproducible diffusion experiments were first put forward [4, 5].

Keywords

Heat Capacity Lattice Constant Diffusion Equation Thermal Expansion Coefficient Debye Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W.C. Roberts-Austen, Bakerian Lecture: On the diffusion of metals, Philos Trans. Royal. Soc. (London) A 187, 383–415, (1896)Google Scholar
  2. 2.
    W. Jost, Diffusion in Solids, Liquids, Gas (Academic Press, New York, 1952)Google Scholar
  3. 3.
    W. Seith, Diffusion in Metallen (Springer, Berlin, 1954)Google Scholar
  4. 4.
    L. Slifkin, D. Lazarus, C.T. Tomisuka, Self-diffusion in pure polycrystalline silver. J. Appl. Phys. 23, 1032–1034 (1952)CrossRefGoogle Scholar
  5. 5.
    C.T. Tomizuka, in Diffusion Methods of Experimental Physics, ed. by K. Lark-Horrowitz, V.A. Johnson, vol. 6, Part A (Academic Press, New York, 1959), pp. 364–413Google Scholar
  6. 6.
    N.F. Mott, R.F. Gurney, Electronic Processes in Ionic Crystals (Clarendon Press, Oxford, 1948)Google Scholar
  7. 7.
    J.H. Crawford Jr., L.M. Slifkin (eds.), Point Defects in Solids, vol. 1–2 (Plenum Press, London, 1975)Google Scholar
  8. 8.
    A.S. Nowick, J.J. Burton (eds.), Diffusion in Solids: Recent Developments (Academic Press, New York, 1975)Google Scholar
  9. 9.
    G.E. Murch, A.S. Nowick (eds.), Diffusion in Crystalline Solids (Academic Press, New York, 1984)Google Scholar
  10. 10.
    H. Mehrer, in Diffusion in Solids, Fundamentals Methods, Materials, Diffusion-Controlled Processes, vol. 155 (Springer, Berlin, 2007)Google Scholar
  11. 11.
    P. Heitjans, J. Kärger (eds.), Diffusion in Condensed Matter Methods Materials, Models (Springer, Berlin, 2008)Google Scholar
  12. 12.
    V.G. Plekhanov, Applications of isotope effect in solids. J. Mater. Sci. 38, 3341–3429 (2003)CrossRefGoogle Scholar
  13. 13.
    J.R. Manning, Diffusion of Atoms in Crystals (Princeton, New Jersey, 1968)Google Scholar
  14. 14.
    J. Crank, The Mathematics of Diffusion (Oxford University Press, New York, 1975)Google Scholar
  15. 15.
    D. Wolf, Spin Temperature and Nuclear-Spin Relaxation in Matter: Basic Principles and Applications (Oxford University Press, New York, 1979)Google Scholar
  16. 16.
    V.G. Plekhanov, Applications of Isotopic Effects in Solids (Springer-Verlag, Berlin, 2004)CrossRefGoogle Scholar
  17. 17.
    H.S. Carslaw, C. Jaeger, Conduction Heat in Solids (Oxford University Press, New York, 1959)Google Scholar
  18. 18.
    S.J. Rothman, The measurement of tracer diffusion coefficients in solids, in [9], chap. 1, p. 1–61Google Scholar
  19. 19.
    N.L. Pterson, W.K. Chen, Cation self-diffusion and the isotope effect in \({\rm Mn}_{\delta } {\rm O}\), in [8], Chap. 2, pp. 115–157. J. Phys. Chem. Solids 43, 29–38 (1982)Google Scholar
  20. 20.
    W. Frank, U. Gösele, H. Mehrer et al., Diffusion in silicon and germanium, in [9], Chap. 2, pp. 63–141Google Scholar
  21. 21.
    D.E. Aboltyn, Ya.E. Karis, V.G. Plekhanov, Experimental manifestation of the role of phonons in the formation and motion of point defects in alkali halide crystals. Sov. Phys. Solid State 22, 510–511 (1980)Google Scholar
  22. 22.
    A. Seager, K.P. Chik, Diffusion mechanisms and point defects in silicon and germanium. Phys. Stat. Solidi 29, 455–542 (1068)CrossRefGoogle Scholar
  23. 23.
    R.N. Ghashtagor, diffusion in tellurium. I. Anisotropy and impurity effects. Phys. Rev. 155, 598–602 (1967)CrossRefGoogle Scholar
  24. 24.
    M. Werner, H. Mehrer, H. Siethoft, Self-diffusion and antimony diffusion in tellurium, J. Phys. C: Solid State Phys. 16, 6185–6197 (1983)Google Scholar
  25. 25.
    P. Bratter, H. Gobrecht, Self-diffusion in selenium. Phys. Status Solidi 37, 869–878 (1970)CrossRefGoogle Scholar
  26. 26.
    D.M. Holloway, Applications of depth profiling by Auger sputter techniques. J. Vac. Sci. Technol. 12, 392–399 (1975)CrossRefGoogle Scholar
  27. 27.
    J.W. Mayer, J.M. Poate, in Thin Film Interdiffusion and Reactions, ed. by N.B. Urli, J.B. Corbett (Springer, Berlin, 1981)Google Scholar
  28. 28.
    R. Behrisch, Introduction and overview in Sputtering by Particle Bombardment, II, ed. by R. Behrisch (Springer, Berlin, 1981), Chap. 1, pp. 1–10Google Scholar
  29. 29.
    B. Chapman, Glow Dicharge Processes (Wiley, New York, 1980)Google Scholar
  30. 30.
    R.D. Reader, H.R. Kauffman, Optimization of an electron-bombardmention source for ion machining. J. Vac. Sci. Technol. 12, 1344–1347 (1975)CrossRefGoogle Scholar
  31. 31.
    J.N. Mundy, S.J. Rothman, An apparatus for microsectioning diffusion samples by sputtering, Ibid, A 1, 74–78 (1983)Google Scholar
  32. 32.
    D. Gupta, R.R.C. Tsui, A universal microsectioning technique for diffusion. Appl. hys. Lett. 17, 294–297 (1970)CrossRefGoogle Scholar
  33. 33.
    H. Liebl, Secondary-ion mass spectrometry and its use in depth profiling. J. Vac. Sci. Technol. 12, 385–399 (1975)CrossRefGoogle Scholar
  34. 34.
    W. Reuter, J.E.E. Baglin, Secondary-ion mass spectrometry and Rutherford backscattering spectroscopy for the analysis of thin films, Ibid, 18, 282–288 (1981)Google Scholar
  35. 35.
    M.-P. Macht, V. Naundorf, Direct measurement of small diffusion coefficients with secondary mass spectroscopy, J. Appl. Phys. 53, 7551–7558 (1982)Google Scholar
  36. 36.
    G.J. Slusser, J.S. Slattery, Secondary-ion mass spectrometry analysis of semiconductor layers. J. Vac. Sci. Technol. 18, 301–304 (1981)CrossRefGoogle Scholar
  37. 37.
    D.S. Catlett, J.N. Spencer, G.J. Vogt, Hydrogen transport in lithium hydride as a function of pressure. J. Chem. Phys. 58, 3432–3438 (1973)CrossRefGoogle Scholar
  38. 38.
    J.N. Spencer, D.S. Catlett, G.J. Vogt, Hydrogen transport in lithium hydrides a function of temperature, Ibid, 59, 1314–1318 (1973)Google Scholar
  39. 39.
    V.B. Ptashnik, TYu. Dunaeva, Self-diffusion of lithium and hydrogen ions in lithium hydride single crystals. Fiz. Tverd. Tela 19, 1643–1647 (1977)Google Scholar
  40. 40.
    Yu.M. Baikov, V.B. Ptashnik, T.Yu. Dunaeva, Influence of isotope composition of hydrogen on the electric conductivity of solid lithium hydride, Fiz. Tverd. Tela. 20, 1244–1246 (1978) (in Russian)Google Scholar
  41. 41.
    T.A. Dellin, G.J. Dienes, C.R. Rischer et al., Low-temperature volume expansion of LiH-LiT. Phys. Rev. B 1, 1745–1753 (1970)CrossRefGoogle Scholar
  42. 42.
    F.E. Pretzel, D.T. Vier, E.G. Szklarz et al., Los Alamos Sci. Lab. Rep. LA 2463 (1961) cited in [40]Google Scholar
  43. 43.
    H. Letaw Jr, W.M. Portnoy, L. Slifkin, Self-diffusion in germanium. Phys. Rev. 102, 636–639 (1956)CrossRefGoogle Scholar
  44. 44.
    M.W. Valenta, C. Ramasastry, Effect of heavy doping on the self-diffusion of germanium, Ibid, 106, 73–75 (1957)Google Scholar
  45. 45.
    D.R. Campbell, Isotope effect for self-diffusion in Ge, Ibid, B 12, 2318–2324 (1975)Google Scholar
  46. 46.
    G. Vogel, H. Hettich, H. Mehrer, Self-diffusion in intrinsic germanium and effects of doping on self-diffusion in germanium. J. Phys. C: Solid State Phys. 16, 6197–6208 (1983)CrossRefGoogle Scholar
  47. 47.
    A. Seeger, W. Frank, On the theory of the diffusion of gold into dislocated silicon wavers. Appl. Phys. A 27, 171–176 (1982)CrossRefGoogle Scholar
  48. 48.
    H.D. Fuchs, W. Walukiewicz, W. Dondl et al., Germanium \(^{70}{\rm Ge/}^{74}\) Ge isotope heterostructures: an approach to self-diffusion studies. Phys. Rev. B51, 16817–16821 (1995)Google Scholar
  49. 49.
    Beke D.L. (ed.), Diffusion in Semiconductors and Non-Metallic Solids, Landolt-Börnstein, New Series, Group III, vol. 33A, (Springer, Berlin, 1998)Google Scholar
  50. 50.
    M. Schulz (ed.), Impurities and Defects in Group IV Elements, IV–IV and III–V Compounds, Landolt-Börnstein, New Series, Group III, vol. 41A2, Part \(\alpha \), (Springer, Berlin, 2002)Google Scholar
  51. 51.
    M. Schulz (ed.), Impurities and Defects in Group IV Elements, IV–IV and III–V Compounds, Landolt-Börnstein, New Series, Group III, vol. 41A2, Part \(\beta \), (Springer, Berlin, 2003)Google Scholar
  52. 52.
    H. Bracht, N.A. Stolwijk, Solubility in Silicon and Germanium, Landolt-Börnstein, New Series, Group III, vol. 41A2, Part \(\alpha \), (Springer, Berlin, 2002)Google Scholar
  53. 53.
    N.A. Stolwijk, H. Bracht, Diffusion in Silicon, Germanium and Their Alloys, Landolt-Börnstein, New Series, Group III, vol. 33A (Springer, Berlin, 1998)Google Scholar
  54. 54.
    J. Spitzer, T. Ruf, W. Dondl et al., Raman scattering by optical phonons in isotopic \(^{70}({\rm Ge})_{n}^{74}({\rm Ge})_{n}\) superlattice. Phys. Rev. Lett. 72, 1565–1568 (1994)CrossRefGoogle Scholar
  55. 55.
    H.D. Fuchs, K.M. Itoh, E.E. Haller, Isotopically controlled germanium: A new medium for the study of carrier scattering by neutral impurities. Philos. Mag. B 70, 661–670 (1994)CrossRefGoogle Scholar
  56. 56.
    H. Bracht, H.H. Silvester, Self- and foreign-atom diffusion in semiconductor isotope heterostructures. II Experimental results for silicon, Phys. Rev. B 75, 035211/1–21, (2007)Google Scholar
  57. 57.
    H. Bracht, Self- and foreign-atom diffusion in semiconductor isotope heterostructures. I. Continuum theoretical calculations, Ibid, B 75, 035210/1–16, (2007)Google Scholar
  58. 58.
    G. Leibfried, W. Ludwig, in Theory of Anharmonic Effects in Crystals Solid State Physics, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1961) p. 275–445Google Scholar
  59. 59.
    N.W. Aschcroft, N. David Mermin, Solid State Physics (Harcourt Brace College Publishers, New York, 1975)Google Scholar
  60. 60.
    G.P. Srivastawa, The Physics of Phonons (Hilger, Bristol, 1990)Google Scholar
  61. 61.
    I.E. Tamm, Eine Bemerkung zur Diracschen Theorie der Lichtenstroung und Dispersion. Zs. Phys. 62, 705–708 (1930)CrossRefGoogle Scholar
  62. 62.
    M. Blackman, in The specific heat of solids Handbuch der Physik, ed. by S. Flüge, Vol 7, Pt. 1 (Springer-Verlag, Berlin, 1955) p. 325–367Google Scholar
  63. 63.
    P. Klemens, in Thermal Conductivity and Lattice Vibrational Modes Solid State Physics, ed. by F. Seitz, D. Turnbull, Vol. 7 (Academic Press, New York, 1959) p. 1–98Google Scholar
  64. 64.
    P. Debye, The Debye theory of specific heat, Ann. Phys. (Leipzig) 39(4) 789–803 (1912)Google Scholar
  65. 65.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, New York, 1968)Google Scholar
  66. 66.
    V.G. Plekhanov, Isotope effect on the lattice dynamics of crystals. Mater. Sci.& Eng. R 35, 139–237 (2001)CrossRefGoogle Scholar
  67. 67.
    D.F. Gibbons, Thermal expansion of some crystals with the diamond structure. Phys. Rev. 112, 136–140 (1958)CrossRefGoogle Scholar
  68. 68.
    D.N. Batchelor, R.O. Simons, Lattice constants and thermal expansivities of silicon and calcium ftuoride between 6 and 322K. J. Chem. Phys. 41, 2324–2330 (1964)CrossRefGoogle Scholar
  69. 69.
    A.S. Okhotin, A.S. Pushkarski, V.V. Gorbachev, Thermophysical Properties of Semiconductors (Moscow (Atom Publ House, London, 1972). (in Russian)Google Scholar
  70. 70.
    S.I. Novikova, Thermal Expansion of Solids (Science, Moscow, 1974) (in Russian)Google Scholar
  71. 71.
    G. Dolling, R.A. Cowley, The thermodynamic and optical properties of germanium, silicon, diamond and gallium arsenide. Proc. Phys. Soc. 88, 463–494 (1966)CrossRefGoogle Scholar
  72. 72.
    V.G. Plekhanov, Elementary excitations in isotope-mixed crystals. Phys. Reports 410, 1–235 (2005)CrossRefGoogle Scholar
  73. 73.
    T.H. Baron, J.G. Collins, G.K. White, Thermal expansion of solids at low temperatures. Adv. Phys. 29, 609–730 (1980)CrossRefGoogle Scholar
  74. 74.
    V.I. Ozhogin, A.V. Inyushkin, A.N. Taldenkov, et al., Isotope effect for thermal expansion coefficient of germanium, JETP (Moscow) 115, 243–248 (1999) (in Russian)Google Scholar
  75. 75.
    H. Jex, Thermal expansion and mode Gruneisen parameters of LiH and LiD. J. Phys. Chem. Solids 35, 1221–1223 (1974)CrossRefGoogle Scholar
  76. 76.
    B.W. James, H. Kherandish, The low temperature variation of the elastic constants of LiH and LiD. J. Phys. C: Solid State Phys. 15, 6321–6339 (1982)CrossRefGoogle Scholar
  77. 77.
    D. Gerlich, C.S. Smith, The pressure and temperature derivatives of the elastic module of lithium hydride. J. Phys. Chem Solids 35, 1587–1592 (1974)CrossRefGoogle Scholar
  78. 78.
    J.J. Fontanella, D.E. Schuele, Low temperature Gruneisen parameter of RbI from elasticity data, Ibid 31, 647–654 (1970)Google Scholar
  79. 79.
    J.R. Hardy, A.M. Karo, The Lattice Dynamics and Statics of Alkali Halide Crystals (Plenum Press, New York, 1979)CrossRefGoogle Scholar
  80. 80.
    V.G. Plekhanov, Isotope-Mixed Crystals: Fundamentals and Applications, Bentham, e-books, (2011). ISBN 978-1-60805-091-8Google Scholar
  81. 81.
    S. Haussuhl, I. Skorczyk, Elastische und thermoelastische Eigenschaften von LiH und LiD einkristallen. Zs. Krist. 130, 340–345 (1969)CrossRefGoogle Scholar
  82. 82.
    A.R. Ubellohde, The Molten State of Substances (Metallurgy, Moscow, 1982) (in Russian)Google Scholar
  83. 83.
    G.L. Anderson, G. Nasise, K. Phillipson et al., Isotopic effects on the thermal expansion of lithium hydride. J. Phys. Chem. Solids 31, 613–618 (1970)CrossRefGoogle Scholar
  84. 84.
    R.B. Von Dreele, J.G. Morgan, S.M. Stishov, Thermal expansion and equation of state of KCN of different isotopic composition, JETP (Moscow) 114, 2182–2186 (1998) (in Russian)Google Scholar
  85. 85.
    A.P. Zhernov, Thermal expansion of germanium crystal lattice with different isotope composition, Fiz. Tverd. Tela (St. Petersburg) 40, 1829–1831 (1998)Google Scholar
  86. 86.
    A. P. Zhirnov, Statistical displacement about isotope impurities and remain resistance, JETP (Moscow) 114, 2153–2165 (1998) (in Russian)Google Scholar
  87. 87.
    I.G. Kuleev, I.I. Kuleev, Influence normal processes of phonon–phonon scattering on maximum values of thermal conductivity isotope pure Si crystal, JETP (Moscow) 122, 558–569 (2002) (in Russian)Google Scholar
  88. 88.
    V.I. Tyutyunnik, Effect of isotope substitution on thermal expansion of LiH crystal. Phys. Status Solidi (b) 172, 539–543 (1992)CrossRefGoogle Scholar
  89. 89.
    V.S. Kogan, Isotope effect in structuring properties. Sov. Phys. Uspekhi 5, 579–618 (1963)CrossRefGoogle Scholar
  90. 90.
    M. Planck, Zur Theorie der Wämestrahlung. Ann Phys. 336, 758–768 (1910)CrossRefGoogle Scholar
  91. 91.
    Ch. Kittel, Thermal Physics (Wiley, New York, 1969)Google Scholar
  92. 92.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattice (Oxford University Press, Oxford, 1988)Google Scholar
  93. 93.
    V.G. Plekhanov, Isotope effect in lattice dynamics, Physics-Uspekhi (Moscow) 46, 689–717 (2003); Lattice dynamics of isotope-mixed crystals, ArXiv:cond-mat/1007.5125Google Scholar
  94. 94.
    P. Günter, Ann. Phys. 63, 476 (1920) cited in [97]Google Scholar
  95. 95.
    V.N. Kostryukov, The capacity of LiH between 3.7 and 295K, Zh. Fiz. Khim. (Moscow) 35, 1759–1762 (1961) (in Russian)Google Scholar
  96. 96.
    V.G. Plekhanov, Lattice dynamics of isotopically mixed crystals, Opt. Spectr. (St. Petersburg) 82, 95–124 (1997)Google Scholar
  97. 97.
    G. Yates, G.H. Wostenholm, J.K. Bingham, The specific heat of \(^{7}{\rm LiH} {\rm and} ^{7}{\rm LiD}\) at low temperature. J. Phys. C: Solid state Phys. 7, 1769–1778 (1974)CrossRefGoogle Scholar
  98. 98.
    M.W. Guinan, C.F. Cline, Room temperature elastic constants of \(^{7}{\rm LiH} {\rm and} ^{7}{\rm LiD}\). J. Nonmetals 1, 11–15 (1972)Google Scholar
  99. 99.
    D.P. Schumacher, Polymorphies transition of LiH. Phys. Rev. 126, 1679–1684 (1962)CrossRefGoogle Scholar
  100. 100.
    K.-F. Berggren, A pseudopotential approach to crystalline lithium hydride, J. Phys. C: Solid State Phys. 2, 802–815 (1969)Google Scholar
  101. 101.
    F.F. Voronov, V.A. Goncharov, Compressions of lithium hydride, Fiz. Tverd. Tela (St. Petersburg) 8, 1643–1645 (1966) (in Russian)Google Scholar
  102. 102.
    D.R. Stephens, E.M. Lilley, Compressions of isotopes lithium hydride. J. Appl. Phys. 39, 177–180 (1968)CrossRefGoogle Scholar
  103. 103.
    Q. Johnson, A.C. Mitchel, Search for the NaCl and CsCl transition in LiH by flash X-ray diffraction. Acta Cryst. A31, S241–S245 (1975)Google Scholar
  104. 104.
    Y. Kondo, K.J. Asaumi, Effect of pressure on the direct gap of LiH. J. Phys. Soc. Japan 57, 367–371 (1988)CrossRefGoogle Scholar
  105. 105.
    K. Chandehari, A. Ruoff, Band gap and index refraction of CsH to 25 GPa. Solid State Commun. 95, 385–388 (1995)CrossRefGoogle Scholar
  106. 106.
    W. Schnelle, E. Gmelin, Heat capacity of germanium crystals with different isotopic composition. J. Phys: Condens. Matter 13, 6087–6094 (2001)CrossRefGoogle Scholar
  107. 107.
    M. Sanati, S.K. Estreicher, Specific heat and entropy of GaN, Ibid 16, L327–L331 (2004)Google Scholar
  108. 108.
    U. Piestergen, in Heat capacity and Debye temperature Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer, Vol. 2 (Academic Press, New York, 1966) p. 49–62Google Scholar
  109. 109.
    G. London, The difference in molecular volume of isotopes. Z. Phys. Chem. Neue Folge 16, 3021–3029 (1958)CrossRefGoogle Scholar
  110. 110.
    A.R. Ruffa, Thermal expansion and zero-point displacement in isotopic lithium hydride. Phys. Rev. B 27, 1321–1325 (1983)CrossRefGoogle Scholar
  111. 111.
    E.E. Shpil’rain, K.A. Yakimovich, T.N. Mel’mikova, Thermal Properties of Lithium Hydride, Deuteride and Tritide and Their Solutions (Energoatomizdat, Moscow, 1983) (in Russian)Google Scholar
  112. 112.
    A.A. Berezin, A.M. Ibragim, Effects of the diversity of stable isotopes on properties of materials. Mater. Chem. Phys. 19, 420–437 (1988)CrossRefGoogle Scholar
  113. 113.
    D.K. Smith, H.R. Leider, Low-temperature thermal expansion of LiH. J. Appl. Crystal. 1, 246–249 (1968)CrossRefGoogle Scholar
  114. 114.
    H. Holloway, K.C. Hass, M.A. Tamor et al., Isotopic dependence of lattice constants of diamond. Phys. Rev. B44, 7123–7126 (1991)Google Scholar
  115. 115.
    H. Holloway, K.C. Hass, M.A. Tamor et al., Isotopic dependence of lattice constants of diamond. Phys. Rev. B 45, 6353E (1992)CrossRefGoogle Scholar
  116. 116.
    P. Pavone, S. Baroni, Dependence of the crystal lattice constant on isotopic composition. Solid State Commun. 90, 295–297 (1994)CrossRefGoogle Scholar
  117. 117.
    R.C. Bushert, A.E. Merlin, S. Pace et al., Effect of isotope concentration on the lattice parameter of germanium perfect crystals. Phys. Rev. B 38, 5219–5221 (1988)CrossRefGoogle Scholar
  118. 118.
    J.C. Noya, C.P. Hrrero, R. Ramirez, Isotope dependence of the lattice parameter of germanium from path-integral Monte Carlo simulations. Phys. Rev. B 56, 237–243 (1997)CrossRefGoogle Scholar
  119. 119.
    C.P. Herrero, Dependence of the silicon lattice constant on isotopic mass. Phys. Status Solidi (b) 220, 857–867 (2000)CrossRefGoogle Scholar
  120. 120.
    Y. Ma, J.S. Tse, Ab initio detrmination of crystal lattice constant and thermal expansion for germanium isotopes. Solid State Commun. 143, 161–165 (2007)CrossRefGoogle Scholar
  121. 121.
    W. Banholzer, T. Anthony, Diamond properties as a function of isotopic composition. Thin Solid Films 212, 1–10 (1992)CrossRefGoogle Scholar
  122. 122.
    W.B. Zimmerman, Lattice constant dependence on isotopic composition in the \(^{7}\)Li(H, D) system. Phys. Rev. B5, 4704–4707 (1972)Google Scholar
  123. 123.
    T. Yamanaka, S. Morimoto, H. Kanda, Influence of the isotope ratio on the lattice constant of diamond, Ibid B49, 9341–9343 (1994)Google Scholar
  124. 124.
    R. Vogelgesang, A.K. Ramdas, S. Rodriguez et al., Brillouin and Raman in natural and isotopically controlled diamond. Phys. Rev. B 54, 3989–3999 (1996)CrossRefGoogle Scholar
  125. 125.
    N. Garo, A. Cantarero, T. Ruf et al., Dependence of the lattice parameters and energy gap of zinc-blende-type semiconductors on isotopic mass. Phys. Rev. B 54, 4732–7440 (1996)Google Scholar
  126. 126.
    A. Debernardi, M. Cardona, Isotopic effect on the lattice constant in compound semiconductors by perturbation theory: An ab initio calculation. Phys. Rev. B 54, 11305–11310 (1996)CrossRefGoogle Scholar
  127. 127.
    H. Bilz, W. Kress, Phonon Dispersion Relations in Insulators (Springer, Berlin, 1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Mathematics and Physics DepartmentComputer Science CollegeTallinnEstonia

Personalised recommendations