Isotopes in Condensed Matter pp 53-86 | Cite as
Early Spectroscopic Studies of Isotopes
Chapter
First Online:
Abstract
The interpretation of atomic isotope shifts relies partly on the knowledge of nuclear structure. Conversely it can provide some information on the structure nuclei. This relation between the two fields has been for many years the main reason for the interest in isotope shifts of optical (electronic) transition (see, e.g. reviews and monographs).
Keywords
Irreducible Representation Isotope Effect Vibrational Energy Diatomic Molecule Isotope Shift
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.A.P. Striganov, Ju.P. Donzov, Isotope effect in atomic spectra, Usp. Fiz. Nauk 55, 315–330 (1955) (in Russian)Google Scholar
- 2.I.I. Sobel’man, Introduction in Theory of Atomic Spectra, 2nd edn. (Science, Moscow, 1977) (in Russian)Google Scholar
- 3.S.E. Frish, Optical Spectra of Atoms ( Moscow - Leningrad, Fizmatgiz, 1963). (in Russian)Google Scholar
- 4.W.H. King, Isotope Shift in Atomic Spectra (Plenum Press, New York, 1984)Google Scholar
- 5.R.C. Barrett, Nuclear charge distributions. Rep. Prog. Phys. 37, 1–54 (1974)CrossRefGoogle Scholar
- 6.D.F. Jackson, Nuclear sizes and the optical model, Rep. Prog. Phys., 37, 55–146 (1974)Google Scholar
- 7.R.C. Barrettt, D.C. Jackson, Nuclear Sizes and Structure (Clarendon Press, Oxford, 1977)Google Scholar
- 8.M. Waraquier, J. Morean, K. Heyde et al., Rearrangement effects in shell model calculations using density - dependent interactions. Phys. Reports 148, 249–291 (1987)CrossRefGoogle Scholar
- 9.K. Heilig, A. Steudel, Changes in mean square nuclear charge radii from optical isotope shift. At. Data Nucl. Data Tables 14, 613 (1974)CrossRefGoogle Scholar
- 10.H.W. Brandt, K. Heilig, A. Steudel, Optical isotope shift measurements of \(^{40, \text{42,} \text{43,} \text{44,} \text{48}}\)Ca by use of enriched isotopes in atomic beam. Phys. Lett. A64, 29–30 (1977)Google Scholar
- 11.F. Aufmuth, K. Heilig, A. Steudel, Changes in mean square nuclear charge radii from optical isotope shift. At. Data Nucl. Data Tables 37, 455–490 (1987)CrossRefGoogle Scholar
- 12.A. Djouadi, The dichotomy of electroweak symmetry breaking: The Higgs boson and Standard model. Phys. Reports 457, 1–216 (2008)CrossRefGoogle Scholar
- 13.D.N. Stacey, Isotope shift and nuclear charge distributions. Rep. Prog. Phys. 29, 171–215 (1966)CrossRefGoogle Scholar
- 14.J. Bausche, R. - J. Champeau, Recent progress in the theory of atomic isotope shift, Adv. At. Mol. Physics 12, 39–86 (1976)Google Scholar
- 15.E.N. Ramsden, A-Level Chemistry (Hull, Stanley Thornes Publishers, 1985; L.J. Malone, Basic Concepts of Chemistry (New York, Wiley, 2003)Google Scholar
- 16.V.I. Kogan, The discovery of the Planck constant: "X - ray" analysis of the scientific situation (1900). Overlooked opportunities of choice of the Second Step (to the centenary of the First Step of quantum theory), Usp. Fiz. Nauk 170, 1351–1357 (2000) (in Russian)Google Scholar
- 17.E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1953)Google Scholar
- 18.Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge University Press, Cambri dge, 2006)Google Scholar
- 19.E.V. Shpol’sky, Atomic Physics (Fiz. - Mat. Lit, Part One (Moscow, 1974). (in Russian)Google Scholar
- 20.G. Herzberg, Molecular Spectra and Molecular Structure (D. van Nostranr, New York, 1951)Google Scholar
- 21.E.B. Wilson, Jr, J.C. Decius, P.C. Gross, Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra (New York, McGraw-Hill, 1955)Google Scholar
- 22.M.A. Eliashevich, Atomic and Molecular Spectroscopy ( Moscow, Fizmatgiz, 1962). (in Russian)Google Scholar
- 23.V.G. Plekhanov, Manifestation and Origin of the Isotope Effect, ArXiv:gen. phys/0907.2024Google Scholar
- 24.A.P. Striganov, Isotope spectral analysis, Usp. Fiz. Nauk 58, 365–414 (1956) (in Russian)Google Scholar
- 25.L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (New York, Pergamon Press, 1977)Google Scholar
- 26.A. Huber, Th Udem, B. Gross et al., Hydrogen - deuterium 1s–2s isotope shift and the structure of the deuteron. Phys. Rev. Lett. 80, 468–471 (1998)Google Scholar
- 27.Th. Udem, B. Gross, M. Kourogi, et al., Phase coherent measurement of the hydrogen 1s–2s transition frequency with an optical frequency interval divider chain, Phys. Rev. Lett., 79, 2646–2649 (1997)Google Scholar
- 28.D.S. Hughes, C. Eckart, The effect of the motion of the nucleus on the spectra of Li I and Li II. Phys. Rev. 36, 694–698 (1930)CrossRefGoogle Scholar
- 29.J.P. Vinti, Isotope shift in magnesium. Phys. Rev. 56, 1120–1132 (1939)CrossRefGoogle Scholar
- 30.J. Rosenthal, G. Breit, The isotpe shift in hyperfine structure. Phys. Rev. 41, 459–470 (1932)CrossRefGoogle Scholar
- 31.G. Raxah, Isotopic displacement and hyperfine structure. Nature (London) 129, 723–724 (1932)CrossRefGoogle Scholar
- 32.P. Brix, H. Kopferman, Isotope shift studies of nuclei. Rev. Mod. Phys. 30, 517–520 (1958)CrossRefGoogle Scholar
- 33.D. Goorvitch, S.P. Davis, H. Kleinman, Isotope shift and hyperfine structure of the neutron-eficient thallium isotopes. Phys. Rev. 188, 1897–1904 (1969)CrossRefGoogle Scholar
- 34.A. - M. Martensson - Pendrill, D.S. Gough and P. Hannaford, Isotope shifts and hyperfine structure in the 369.4 nm 6s–6p\(_{1/2}\) resonance line of single ionised ytterbium, Phys. Rev. A49, 3351–3365 (1994)Google Scholar
- 35.U. Bersinsh, M. Gustaffson, D. Hanstrop, Isotope shift in the electron affinity of chlorine, ArXiv, phys/9804028Google Scholar
- 36.E.C. Seltzer, K X - ray isotope shifts. Phys. Rev. 188, 1916–1921 (1969)CrossRefGoogle Scholar
- 37.E.K. Broch, Arch. Math. Natur. 48, 25–32 (1945), cited in [36]Google Scholar
- 38.H. Haken, HCh. Wolf, The Physics of Atoms and Quanta (Springer, Berlin, 2005)Google Scholar
- 39.P.L. Lee and Boehm, X - ray isotope shofts and variations of nuclear charge radii in isotopes, Phys. Rev. C8, 819–826 (1973)Google Scholar
- 40.P.L. Lee, F. Boehm, A.A. Hahn, Variations of nuclear charge radii in mercury isotopes with A = 198, 199, 200, 201, 202 and 204 from x - ray isotope shifts. Phys. Rev. C17, 1859–1861 (1978)Google Scholar
- 41.V.G. Plekhanov, Isotopetronics---new direction of nanoscience, ArXiv: phys/1007.5386Google Scholar
- 42.V.G. Plekhanov, Elementary excitations in isotope - mixed crystals. Phys. Reports 410, 1–235 (2005)CrossRefGoogle Scholar
- 43.M.A. Eliashevich, The mechanics of molecular vibrarions. Usp. Fiz. Nauk 48, 482–544 (1946)Google Scholar
- 44.A. Anderson (ed.), The Raman Effect (Marcell Dekker Inc., New York, 1973)Google Scholar
- 45.D.A. Long, Raman Spectroscopt (MsGraw-Hill Inc., UK, 1977)Google Scholar
- 46.J.G. Grasselli, M. Snavely, B.J. Bulkin, Chemical Application of Raman Spectroscopy (Wiley, New York, 1981)Google Scholar
- 47.H.A. Shymanski (ed.), Raman Spectroscopy (Plenum Press, New York, 1967)Google Scholar
- 48.V.G. Plekhanov, Fundamentals and applications of isotope effect in modern technology. J. Nucl. Sci. and Technol. (Japan) 43, 375–381 (2006)CrossRefGoogle Scholar
- 49.J.G. Valatin, The isotope effect of the potential function of molecular states. Phys. Rev. 73, 346–347 (1948)CrossRefGoogle Scholar
- 50.C.N. Banwell, Fundamentala of Molecular Spectroscopy (McGraw - Hill Inc., New York - London, 1983)Google Scholar
- 51.V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Prog. Mater. Sci. 51, 287–486 (2006)CrossRefGoogle Scholar
- 52.S. Bhagavantam, T. Venkataraudu, Theory of Groups and its Applications to Physical Problems (Adha University Press, Waltair, 1951)Google Scholar
- 53.I. Danielewicz - Ferchmin and A.B. Ferchmin, Water at ions, biomolecules and charged surfaces, Phys. Chem. Liquids 42, 1–36 (2004)Google Scholar
- 54.G.E. Walrafen, Raman spectral studies of water structure. J. Chem. Phys. 40, 3249–3256 (1964)CrossRefGoogle Scholar
- 55.M.F. Chaplin, Models of water, see http://www.lsbu.ac.uk/water/models.html: A proposal for the structuring of water, Biophys. Chem. 83, 211–221 (2000)
- 56.H.W. Kroto, J.R. Heath, S.C. O’Brien et al., C\(_{60}\): Buckminsterfullerene. Nature (London) 318, 162–163 (1985)CrossRefGoogle Scholar
- 57.W. Kratschmer, B. Fositropolus, D.R. Hoffman, The infrared and ultraviolet absorption spectra of laboratory - produced carbon dust: evidence for the presence of the C\(_{60}\) molecule. Chem. Phys. Lett. 170, 167–170 (1990)CrossRefGoogle Scholar
- 58.J. Menendez and J.B. Page, Vibrational Spectroscopy of C\(_{60}\), in, M. Cardona and G. Guntherodt, eds, Light Scattering in Solids, VIII (Berlin - Heidelberg, Springer, 2000) (Vol. 76 in Topics in Applied Physics)Google Scholar
- 59.K. Mauersberger, Measurement of heavy ozone in the stratosphere. Geophys. Res. Lett. 8, 935–937 (1981)CrossRefGoogle Scholar
- 60.M.H. Thiemens, J.E. Heidenreich, The mass - independent fractionation of oxygen: A novell isotope effect and its possible cosmochemical implications. Science 219, 1073–1075 (1983)CrossRefGoogle Scholar
- 61.E.K. Thornton and E.R. Thornton, Origin and interpretation of isotope effects, in, C.J. Collins and N.S. Bowman, eds, Isotope Effects in Chemical Reactions (New York, van Nostrand Reinhold Co., 1970)Google Scholar
- 62.J. Biegelsen, M.W. Lee and F, Mandel, Equilibrium isotope effect, Ann. Rev. Phys. Chem. 24, 407–440 (1973)Google Scholar
- 63.R.E. Weston, Anomalous or mass-independent isotope effect. Chem. Rev. 99, 2115–2180 (1973)CrossRefGoogle Scholar
- 64.M.H. Thiemens, Mass - independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–346 (1999)CrossRefGoogle Scholar
- 65.K. Mauersberger, D. Krankowsky, C. Janssen et al., Assessment of the ozone isotope effect. Adv. At. Mol. and Optical Physics 50, 1–54 (2005)CrossRefGoogle Scholar
- 66.H.S. Johnston, Gas Phase Reaction Rate Theory (The Ronald Press Company, New York, 1966)Google Scholar
- 67.R.E. Weston Jr, When is an isotope effect non - mass dependent. J. Nucl. Sci. and Technol. (Japan) 43, 295–299 (2006)CrossRefGoogle Scholar
- 68.E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–652 (1957)CrossRefGoogle Scholar
- 69.T.L. Wilson, Isotopes in the interstellar medium and circumstellar envelopes. Rep. Prog. Phys. 62, 143–185 (1999)CrossRefGoogle Scholar
- 70.G. Wallerstein, I. Jhen Jr, P. Parker et al., Synthesis of the elements in stars: forty years in progress. Rev. Mod. Phys. 69, 995–1084 (1997)CrossRefGoogle Scholar
- 71.S. Esposito, Primordial Nucleosynthesis: Accurate Prediction for Light Element Abundances, ArXiv:astro-ph/ 990441Google Scholar
- 72.S.M. Anderson, D. Hulsebusch, K. Mauersberger, Suprising rate coefficients for four isotopic variants of O + O\(_{2}\) + M. J. Chem. Phys. 107, 5385–5392 (1997)CrossRefGoogle Scholar
- 73.Ch. Janssen, J. Guenther and K. Mauersberger, Relative formation rates of \(^{50}\)O\(_{3}\) and \(^{52}\)O\(_{3}\)in \(^{16}\)O - \(^{18}\)O, J. Chem. Phys., 111, 7179–7182 (1999)Google Scholar
- 74.K. Mauersberger, K. Erbacher, D. Krankowsky et al., Ozone isotope enrichment: isotopomer-specific rate coefficients. Science 283, 370–373 (1999)CrossRefGoogle Scholar
- 75.B.C. Hathorn, R.A. Marcus, An intramolecular theory of the mass - independent isotope effect for ozone. I. J. Chem. Phys. 111, 4087–4100 (1999)CrossRefGoogle Scholar
- 76.B.C. Hathorn, R.A. Marcus, An intramolecular theory of the mass - independent isotope effect for ozone. II. Numerical implementation at low pressures using a loose transition state. J. Chem. Phys. 113, 9497–9509 (2000)CrossRefGoogle Scholar
- 77.B.C. Hathorn, R.A. Marcus, Estimation of vibrational frequencies and vibrational densities of states in isotopically substituted nonlinear triatomic molecules. J. Phys. Chem. A105, 5586–5589 (2001)CrossRefGoogle Scholar
- 78.Y.Q. GaoMarcus, R.A. Marcus, On the theory of the strange and unconventional isotopic effects in ozone formation. J. Chem. Phys. 116, 137–154 (2002)CrossRefGoogle Scholar
- 79.Y.Q. Gao, W. - Ch. Chenc and R.A. Marcus, A theoretical study of zone isotopic effects using a modified ab initio potential energy surface. J. Chem. Phys. 117, 1536–1543 (2002)CrossRefGoogle Scholar
- 80.D. Babikov, B.K. Kendrick, R.B. Walker et al., Quantum origin of an anomalous isotope effect in ozone formation. Chem. Phys. Lett. 272, 686–691 (2002)Google Scholar
- 81.D. Babikov, B.K. Kendrick, R.B. Walker et al., Metastable states of ozone calculated on an accurate potential energy surface. J. Chem Phys. 118, 6298–6307 (2003)CrossRefGoogle Scholar
- 82.D. Babikov, B.K. Kendrick, R.B. Walker, et al., Formation of ozone - metastable states and anomalous isotope effect,J. Chem Phys. , 119, 2577–2589 (2003)Google Scholar
- 83.J.R. Hulston, H.G. Thode, Variations in the S\(^{33}\), S\(^{34}\), and S\( ^{36}\) contents of meteorities and their relation to chemical and nuclear effects. J. Geophys. Res. 70, 3475–3484 (1965)CrossRefGoogle Scholar
- 84.R.N. Clayton, L. Grossman, T.K. Mayeda, A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488 (1973)CrossRefGoogle Scholar
- 85.G.I. Gellene, An explanation for symmetry - induced isotopic fractionation in ozone, Science 274, 1344–1346 (1996)Google Scholar
- 86.K.S. Grifith and G.I. Gellene, Symmetry restriction in diatom - diatom reactions: II Nonmass dependent isotope effects in the formation of O\(_{4}^{+}\), Science, 96, 4403 4411 (1992)Google Scholar
- 87.J.J. Valentini, Mass-indepenent isotopic fractionation in nonadiabatic molecular collisions. J. Chem Phys. 86, 6757–6765 (1987)CrossRefGoogle Scholar
- 88.J. Sehested, O.J. Nielsen, H. Egsgaard et al., First kinetic study of isotopic enrichment of ozone. J. Geophys. Res. 100, 20979–20982 (1995)CrossRefGoogle Scholar
- 89.J. Sehested, O.J. Nielsen, H. Egsgaard, et al., Kinetic study of the formation of isotopically substituted ozone in argon, J. Geophys. Res., 103, 3545–3552 (1998)Google Scholar
- 90.V.G. Plekhanov, The enigma of the mass, ArXiv, phys./0906.4408Google Scholar
- 91.R.V. Ambartzumian, V.S. Letokhov, Two - steps selective photoionization rubidium by laser radiation, JETP Lett. (Moscow) 13, 305–308 (1971) (in Russian)Google Scholar
- 92.S.A. Tussio, J.W. Durbin, O.G. Peterson, Two-step selective photoionization of U-235 in uranium vapor. J. Quant. Electron. QE - 10, 790–797 (1976)Google Scholar
- 93.J.S. Janes, I. Itzkan, C.T. Pika, Two - photon laser isotope separation of U-235 in uranium vapor. J. Quant. Elextron. QE - 12, 11–117 (1978)Google Scholar
- 94.P.T. Greenland, Laser isotope separation. Contemp. Phys. 31, 405–424 (1990)CrossRefGoogle Scholar
- 95.P.R. Rao, Laser isotope separation of uranium. Current Science 85, 615–633 (2003)Google Scholar
- 96.M. Gilbert, J.M. Weulersse, P. Isnard et al., Multiphonon dissociation of UF\(_{6}\) at 16 \(\mu \)m in supersonic jets. SPIE 669, 10–17 (1986)CrossRefGoogle Scholar
- 97.V.Ju. Baranov (ed.), Isotopes, Vol I-II, Moscow, Fizmatlit, 2005 (in Russian)Google Scholar
- 98.Laser Applications: Isotope Separation, Lawrence Livermore National Laboratory, TGB - 067, 1984Google Scholar
- 99.J.L. Lyman, Laser Spectroscopy and its Applications, L.J. Radziemski (ed.) New York, Marcel Dekker Inc., 1987Google Scholar
- 100.J.W. Kelly, A review of laser isotope separation of uranium hexafluoride, Australian Atomic Energy Comission, ISBN 0642597723, 1983Google Scholar
- 101.R.M. Feinberg, R.S. Hargrove, Overview of uranium atomic vapor laser isotope separation, UCRL - ID - 114671, 1993Google Scholar
- 102.C.B. Moore, Alternative Applications of Atomic Vapor Laser Isotope Separation Technology (National Academic Press, Washington D.C., 1991)Google Scholar
- 103.R.L.R. Murray, Nuclear Energy: An Introduction and Applications (Woburn, MA, Butterworth-Heineman, 2001), pp. 99–113Google Scholar
- 104.P.A. Bokhan, V.V. Buchanov, N.V. Fateev et al., Laser Isotope Separation in Atomivc Vapor (Wiley - VCH - Verlag GmbH& Co., Weinheim, 2006)CrossRefGoogle Scholar
- 105.A.R. Striganov, G.A. Odintzova, Tables of the Spectral Lines of Atoms and Ions (Energoatomizdat, Moscow, 1982). (in Russian)Google Scholar
- 106.Dye Lasers, E. - P. Sheffer (ed.), Moscow, MIr, 1976 (in Russian)Google Scholar
- 107.Handbook of Lasers, A.M. Prokhorov (ed.), Vol. 1, Moscow, Sov’et Radio, 1978 (in Russian)Google Scholar
- 108.P.P. Pronko, P.A. VanRompay, Z. Zhang et al., Isotope enrichment in laser - ablation plumes and commensurately deposited thin films. Phys. Rev. 83, 2596–2599 (1999)Google Scholar
- 109.M. Joseph, P. Monoravi, Boron isotope enrichment in nanosecond pulsed laser-ablation pume. Appl. Phys. A76, 153–156 (2003)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2013