Early Spectroscopic Studies of Isotopes

  • V.  Plekhanov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 162)


The interpretation of atomic isotope shifts relies partly on the knowledge of nuclear structure. Conversely it can provide some information on the structure nuclei. This relation between the two fields has been for many years the main reason for the interest in isotope shifts of optical (electronic) transition (see, e.g. reviews and monographs).


Irreducible Representation Isotope Effect Vibrational Energy Diatomic Molecule Isotope Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.P. Striganov, Ju.P. Donzov, Isotope effect in atomic spectra, Usp. Fiz. Nauk 55, 315–330 (1955) (in Russian)Google Scholar
  2. 2.
    I.I. Sobel’man, Introduction in Theory of Atomic Spectra, 2nd edn. (Science, Moscow, 1977) (in Russian)Google Scholar
  3. 3.
    S.E. Frish, Optical Spectra of Atoms ( Moscow - Leningrad, Fizmatgiz, 1963). (in Russian)Google Scholar
  4. 4.
    W.H. King, Isotope Shift in Atomic Spectra (Plenum Press, New York, 1984)Google Scholar
  5. 5.
    R.C. Barrett, Nuclear charge distributions. Rep. Prog. Phys. 37, 1–54 (1974)CrossRefGoogle Scholar
  6. 6.
    D.F. Jackson, Nuclear sizes and the optical model, Rep. Prog. Phys., 37, 55–146 (1974)Google Scholar
  7. 7.
    R.C. Barrettt, D.C. Jackson, Nuclear Sizes and Structure (Clarendon Press, Oxford, 1977)Google Scholar
  8. 8.
    M. Waraquier, J. Morean, K. Heyde et al., Rearrangement effects in shell model calculations using density - dependent interactions. Phys. Reports 148, 249–291 (1987)CrossRefGoogle Scholar
  9. 9.
    K. Heilig, A. Steudel, Changes in mean square nuclear charge radii from optical isotope shift. At. Data Nucl. Data Tables 14, 613 (1974)CrossRefGoogle Scholar
  10. 10.
    H.W. Brandt, K. Heilig, A. Steudel, Optical isotope shift measurements of \(^{40, \text{42,} \text{43,} \text{44,} \text{48}}\)Ca by use of enriched isotopes in atomic beam. Phys. Lett. A64, 29–30 (1977)Google Scholar
  11. 11.
    F. Aufmuth, K. Heilig, A. Steudel, Changes in mean square nuclear charge radii from optical isotope shift. At. Data Nucl. Data Tables 37, 455–490 (1987)CrossRefGoogle Scholar
  12. 12.
    A. Djouadi, The dichotomy of electroweak symmetry breaking: The Higgs boson and Standard model. Phys. Reports 457, 1–216 (2008)CrossRefGoogle Scholar
  13. 13.
    D.N. Stacey, Isotope shift and nuclear charge distributions. Rep. Prog. Phys. 29, 171–215 (1966)CrossRefGoogle Scholar
  14. 14.
    J. Bausche, R. - J. Champeau, Recent progress in the theory of atomic isotope shift, Adv. At. Mol. Physics 12, 39–86 (1976)Google Scholar
  15. 15.
    E.N. Ramsden, A-Level Chemistry (Hull, Stanley Thornes Publishers, 1985; L.J. Malone, Basic Concepts of Chemistry (New York, Wiley, 2003)Google Scholar
  16. 16.
    V.I. Kogan, The discovery of the Planck constant: "X - ray" analysis of the scientific situation (1900). Overlooked opportunities of choice of the Second Step (to the centenary of the First Step of quantum theory), Usp. Fiz. Nauk 170, 1351–1357 (2000) (in Russian)Google Scholar
  17. 17.
    E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, Cambridge, 1953)Google Scholar
  18. 18.
    Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge University Press, Cambri dge, 2006)Google Scholar
  19. 19.
    E.V. Shpol’sky, Atomic Physics (Fiz. - Mat. Lit, Part One (Moscow, 1974). (in Russian)Google Scholar
  20. 20.
    G. Herzberg, Molecular Spectra and Molecular Structure (D. van Nostranr, New York, 1951)Google Scholar
  21. 21.
    E.B. Wilson, Jr, J.C. Decius, P.C. Gross, Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra (New York, McGraw-Hill, 1955)Google Scholar
  22. 22.
    M.A. Eliashevich, Atomic and Molecular Spectroscopy ( Moscow, Fizmatgiz, 1962). (in Russian)Google Scholar
  23. 23.
    V.G. Plekhanov, Manifestation and Origin of the Isotope Effect, ArXiv:gen. phys/0907.2024Google Scholar
  24. 24.
    A.P. Striganov, Isotope spectral analysis, Usp. Fiz. Nauk 58, 365–414 (1956) (in Russian)Google Scholar
  25. 25.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory) (New York, Pergamon Press, 1977)Google Scholar
  26. 26.
    A. Huber, Th Udem, B. Gross et al., Hydrogen - deuterium 1s–2s isotope shift and the structure of the deuteron. Phys. Rev. Lett. 80, 468–471 (1998)Google Scholar
  27. 27.
    Th. Udem, B. Gross, M. Kourogi, et al., Phase coherent measurement of the hydrogen 1s–2s transition frequency with an optical frequency interval divider chain, Phys. Rev. Lett., 79, 2646–2649 (1997)Google Scholar
  28. 28.
    D.S. Hughes, C. Eckart, The effect of the motion of the nucleus on the spectra of Li I and Li II. Phys. Rev. 36, 694–698 (1930)CrossRefGoogle Scholar
  29. 29.
    J.P. Vinti, Isotope shift in magnesium. Phys. Rev. 56, 1120–1132 (1939)CrossRefGoogle Scholar
  30. 30.
    J. Rosenthal, G. Breit, The isotpe shift in hyperfine structure. Phys. Rev. 41, 459–470 (1932)CrossRefGoogle Scholar
  31. 31.
    G. Raxah, Isotopic displacement and hyperfine structure. Nature (London) 129, 723–724 (1932)CrossRefGoogle Scholar
  32. 32.
    P. Brix, H. Kopferman, Isotope shift studies of nuclei. Rev. Mod. Phys. 30, 517–520 (1958)CrossRefGoogle Scholar
  33. 33.
    D. Goorvitch, S.P. Davis, H. Kleinman, Isotope shift and hyperfine structure of the neutron-eficient thallium isotopes. Phys. Rev. 188, 1897–1904 (1969)CrossRefGoogle Scholar
  34. 34.
    A. - M. Martensson - Pendrill, D.S. Gough and P. Hannaford, Isotope shifts and hyperfine structure in the 369.4 nm 6s–6p\(_{1/2}\) resonance line of single ionised ytterbium, Phys. Rev. A49, 3351–3365 (1994)Google Scholar
  35. 35.
    U. Bersinsh, M. Gustaffson, D. Hanstrop, Isotope shift in the electron affinity of chlorine, ArXiv, phys/9804028Google Scholar
  36. 36.
    E.C. Seltzer, K X - ray isotope shifts. Phys. Rev. 188, 1916–1921 (1969)CrossRefGoogle Scholar
  37. 37.
    E.K. Broch, Arch. Math. Natur. 48, 25–32 (1945), cited in [36]Google Scholar
  38. 38.
    H. Haken, HCh. Wolf, The Physics of Atoms and Quanta (Springer, Berlin, 2005)Google Scholar
  39. 39.
    P.L. Lee and Boehm, X - ray isotope shofts and variations of nuclear charge radii in isotopes, Phys. Rev. C8, 819–826 (1973)Google Scholar
  40. 40.
    P.L. Lee, F. Boehm, A.A. Hahn, Variations of nuclear charge radii in mercury isotopes with A = 198, 199, 200, 201, 202 and 204 from x - ray isotope shifts. Phys. Rev. C17, 1859–1861 (1978)Google Scholar
  41. 41.
    V.G. Plekhanov, Isotopetronics---new direction of nanoscience, ArXiv: phys/1007.5386Google Scholar
  42. 42.
    V.G. Plekhanov, Elementary excitations in isotope - mixed crystals. Phys. Reports 410, 1–235 (2005)CrossRefGoogle Scholar
  43. 43.
    M.A. Eliashevich, The mechanics of molecular vibrarions. Usp. Fiz. Nauk 48, 482–544 (1946)Google Scholar
  44. 44.
    A. Anderson (ed.), The Raman Effect (Marcell Dekker Inc., New York, 1973)Google Scholar
  45. 45.
    D.A. Long, Raman Spectroscopt (MsGraw-Hill Inc., UK, 1977)Google Scholar
  46. 46.
    J.G. Grasselli, M. Snavely, B.J. Bulkin, Chemical Application of Raman Spectroscopy (Wiley, New York, 1981)Google Scholar
  47. 47.
    H.A. Shymanski (ed.), Raman Spectroscopy (Plenum Press, New York, 1967)Google Scholar
  48. 48.
    V.G. Plekhanov, Fundamentals and applications of isotope effect in modern technology. J. Nucl. Sci. and Technol. (Japan) 43, 375–381 (2006)CrossRefGoogle Scholar
  49. 49.
    J.G. Valatin, The isotope effect of the potential function of molecular states. Phys. Rev. 73, 346–347 (1948)CrossRefGoogle Scholar
  50. 50.
    C.N. Banwell, Fundamentala of Molecular Spectroscopy (McGraw - Hill Inc., New York - London, 1983)Google Scholar
  51. 51.
    V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Prog. Mater. Sci. 51, 287–486 (2006)CrossRefGoogle Scholar
  52. 52.
    S. Bhagavantam, T. Venkataraudu, Theory of Groups and its Applications to Physical Problems (Adha University Press, Waltair, 1951)Google Scholar
  53. 53.
    I. Danielewicz - Ferchmin and A.B. Ferchmin, Water at ions, biomolecules and charged surfaces, Phys. Chem. Liquids 42, 1–36 (2004)Google Scholar
  54. 54.
    G.E. Walrafen, Raman spectral studies of water structure. J. Chem. Phys. 40, 3249–3256 (1964)CrossRefGoogle Scholar
  55. 55.
    M.F. Chaplin, Models of water, see A proposal for the structuring of water, Biophys. Chem. 83, 211–221 (2000)
  56. 56.
    H.W. Kroto, J.R. Heath, S.C. O’Brien et al., C\(_{60}\): Buckminsterfullerene. Nature (London) 318, 162–163 (1985)CrossRefGoogle Scholar
  57. 57.
    W. Kratschmer, B. Fositropolus, D.R. Hoffman, The infrared and ultraviolet absorption spectra of laboratory - produced carbon dust: evidence for the presence of the C\(_{60}\) molecule. Chem. Phys. Lett. 170, 167–170 (1990)CrossRefGoogle Scholar
  58. 58.
    J. Menendez and J.B. Page, Vibrational Spectroscopy of C\(_{60}\), in, M. Cardona and G. Guntherodt, eds, Light Scattering in Solids, VIII (Berlin - Heidelberg, Springer, 2000) (Vol. 76 in Topics in Applied Physics)Google Scholar
  59. 59.
    K. Mauersberger, Measurement of heavy ozone in the stratosphere. Geophys. Res. Lett. 8, 935–937 (1981)CrossRefGoogle Scholar
  60. 60.
    M.H. Thiemens, J.E. Heidenreich, The mass - independent fractionation of oxygen: A novell isotope effect and its possible cosmochemical implications. Science 219, 1073–1075 (1983)CrossRefGoogle Scholar
  61. 61.
    E.K. Thornton and E.R. Thornton, Origin and interpretation of isotope effects, in, C.J. Collins and N.S. Bowman, eds, Isotope Effects in Chemical Reactions (New York, van Nostrand Reinhold Co., 1970)Google Scholar
  62. 62.
    J. Biegelsen, M.W. Lee and F, Mandel, Equilibrium isotope effect, Ann. Rev. Phys. Chem. 24, 407–440 (1973)Google Scholar
  63. 63.
    R.E. Weston, Anomalous or mass-independent isotope effect. Chem. Rev. 99, 2115–2180 (1973)CrossRefGoogle Scholar
  64. 64.
    M.H. Thiemens, Mass - independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–346 (1999)CrossRefGoogle Scholar
  65. 65.
    K. Mauersberger, D. Krankowsky, C. Janssen et al., Assessment of the ozone isotope effect. Adv. At. Mol. and Optical Physics 50, 1–54 (2005)CrossRefGoogle Scholar
  66. 66.
    H.S. Johnston, Gas Phase Reaction Rate Theory (The Ronald Press Company, New York, 1966)Google Scholar
  67. 67.
    R.E. Weston Jr, When is an isotope effect non - mass dependent. J. Nucl. Sci. and Technol. (Japan) 43, 295–299 (2006)CrossRefGoogle Scholar
  68. 68.
    E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–652 (1957)CrossRefGoogle Scholar
  69. 69.
    T.L. Wilson, Isotopes in the interstellar medium and circumstellar envelopes. Rep. Prog. Phys. 62, 143–185 (1999)CrossRefGoogle Scholar
  70. 70.
    G. Wallerstein, I. Jhen Jr, P. Parker et al., Synthesis of the elements in stars: forty years in progress. Rev. Mod. Phys. 69, 995–1084 (1997)CrossRefGoogle Scholar
  71. 71.
    S. Esposito, Primordial Nucleosynthesis: Accurate Prediction for Light Element Abundances, ArXiv:astro-ph/ 990441Google Scholar
  72. 72.
    S.M. Anderson, D. Hulsebusch, K. Mauersberger, Suprising rate coefficients for four isotopic variants of O + O\(_{2}\) + M. J. Chem. Phys. 107, 5385–5392 (1997)CrossRefGoogle Scholar
  73. 73.
    Ch. Janssen, J. Guenther and K. Mauersberger, Relative formation rates of \(^{50}\)O\(_{3}\) and \(^{52}\)O\(_{3}\)in \(^{16}\)O - \(^{18}\)O, J. Chem. Phys., 111, 7179–7182 (1999)Google Scholar
  74. 74.
    K. Mauersberger, K. Erbacher, D. Krankowsky et al., Ozone isotope enrichment: isotopomer-specific rate coefficients. Science 283, 370–373 (1999)CrossRefGoogle Scholar
  75. 75.
    B.C. Hathorn, R.A. Marcus, An intramolecular theory of the mass - independent isotope effect for ozone. I. J. Chem. Phys. 111, 4087–4100 (1999)CrossRefGoogle Scholar
  76. 76.
    B.C. Hathorn, R.A. Marcus, An intramolecular theory of the mass - independent isotope effect for ozone. II. Numerical implementation at low pressures using a loose transition state. J. Chem. Phys. 113, 9497–9509 (2000)CrossRefGoogle Scholar
  77. 77.
    B.C. Hathorn, R.A. Marcus, Estimation of vibrational frequencies and vibrational densities of states in isotopically substituted nonlinear triatomic molecules. J. Phys. Chem. A105, 5586–5589 (2001)CrossRefGoogle Scholar
  78. 78.
    Y.Q. GaoMarcus, R.A. Marcus, On the theory of the strange and unconventional isotopic effects in ozone formation. J. Chem. Phys. 116, 137–154 (2002)CrossRefGoogle Scholar
  79. 79.
    Y.Q. Gao, W. - Ch. Chenc and R.A. Marcus, A theoretical study of zone isotopic effects using a modified ab initio potential energy surface. J. Chem. Phys. 117, 1536–1543 (2002)CrossRefGoogle Scholar
  80. 80.
    D. Babikov, B.K. Kendrick, R.B. Walker et al., Quantum origin of an anomalous isotope effect in ozone formation. Chem. Phys. Lett. 272, 686–691 (2002)Google Scholar
  81. 81.
    D. Babikov, B.K. Kendrick, R.B. Walker et al., Metastable states of ozone calculated on an accurate potential energy surface. J. Chem Phys. 118, 6298–6307 (2003)CrossRefGoogle Scholar
  82. 82.
    D. Babikov, B.K. Kendrick, R.B. Walker, et al., Formation of ozone - metastable states and anomalous isotope effect,J. Chem Phys. , 119, 2577–2589 (2003)Google Scholar
  83. 83.
    J.R. Hulston, H.G. Thode, Variations in the S\(^{33}\), S\(^{34}\), and S\( ^{36}\) contents of meteorities and their relation to chemical and nuclear effects. J. Geophys. Res. 70, 3475–3484 (1965)CrossRefGoogle Scholar
  84. 84.
    R.N. Clayton, L. Grossman, T.K. Mayeda, A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485–488 (1973)CrossRefGoogle Scholar
  85. 85.
    G.I. Gellene, An explanation for symmetry - induced isotopic fractionation in ozone, Science 274, 1344–1346 (1996)Google Scholar
  86. 86.
    K.S. Grifith and G.I. Gellene, Symmetry restriction in diatom - diatom reactions: II Nonmass dependent isotope effects in the formation of O\(_{4}^{+}\), Science, 96, 4403 4411 (1992)Google Scholar
  87. 87.
    J.J. Valentini, Mass-indepenent isotopic fractionation in nonadiabatic molecular collisions. J. Chem Phys. 86, 6757–6765 (1987)CrossRefGoogle Scholar
  88. 88.
    J. Sehested, O.J. Nielsen, H. Egsgaard et al., First kinetic study of isotopic enrichment of ozone. J. Geophys. Res. 100, 20979–20982 (1995)CrossRefGoogle Scholar
  89. 89.
    J. Sehested, O.J. Nielsen, H. Egsgaard, et al., Kinetic study of the formation of isotopically substituted ozone in argon, J. Geophys. Res., 103, 3545–3552 (1998)Google Scholar
  90. 90.
    V.G. Plekhanov, The enigma of the mass, ArXiv, phys./0906.4408Google Scholar
  91. 91.
    R.V. Ambartzumian, V.S. Letokhov, Two - steps selective photoionization rubidium by laser radiation, JETP Lett. (Moscow) 13, 305–308 (1971) (in Russian)Google Scholar
  92. 92.
    S.A. Tussio, J.W. Durbin, O.G. Peterson, Two-step selective photoionization of U-235 in uranium vapor. J. Quant. Electron. QE - 10, 790–797 (1976)Google Scholar
  93. 93.
    J.S. Janes, I. Itzkan, C.T. Pika, Two - photon laser isotope separation of U-235 in uranium vapor. J. Quant. Elextron. QE - 12, 11–117 (1978)Google Scholar
  94. 94.
    P.T. Greenland, Laser isotope separation. Contemp. Phys. 31, 405–424 (1990)CrossRefGoogle Scholar
  95. 95.
    P.R. Rao, Laser isotope separation of uranium. Current Science 85, 615–633 (2003)Google Scholar
  96. 96.
    M. Gilbert, J.M. Weulersse, P. Isnard et al., Multiphonon dissociation of UF\(_{6}\) at 16 \(\mu \)m in supersonic jets. SPIE 669, 10–17 (1986)CrossRefGoogle Scholar
  97. 97.
    V.Ju. Baranov (ed.), Isotopes, Vol I-II, Moscow, Fizmatlit, 2005 (in Russian)Google Scholar
  98. 98.
    Laser Applications: Isotope Separation, Lawrence Livermore National Laboratory, TGB - 067, 1984Google Scholar
  99. 99.
    J.L. Lyman, Laser Spectroscopy and its Applications, L.J. Radziemski (ed.) New York, Marcel Dekker Inc., 1987Google Scholar
  100. 100.
    J.W. Kelly, A review of laser isotope separation of uranium hexafluoride, Australian Atomic Energy Comission, ISBN 0642597723, 1983Google Scholar
  101. 101.
    R.M. Feinberg, R.S. Hargrove, Overview of uranium atomic vapor laser isotope separation, UCRL - ID - 114671, 1993Google Scholar
  102. 102.
    C.B. Moore, Alternative Applications of Atomic Vapor Laser Isotope Separation Technology (National Academic Press, Washington D.C., 1991)Google Scholar
  103. 103.
    R.L.R. Murray, Nuclear Energy: An Introduction and Applications (Woburn, MA, Butterworth-Heineman, 2001), pp. 99–113Google Scholar
  104. 104.
    P.A. Bokhan, V.V. Buchanov, N.V. Fateev et al., Laser Isotope Separation in Atomivc Vapor (Wiley - VCH - Verlag GmbH& Co., Weinheim, 2006)CrossRefGoogle Scholar
  105. 105.
    A.R. Striganov, G.A. Odintzova, Tables of the Spectral Lines of Atoms and Ions (Energoatomizdat, Moscow, 1982). (in Russian)Google Scholar
  106. 106.
    Dye Lasers, E. - P. Sheffer (ed.), Moscow, MIr, 1976 (in Russian)Google Scholar
  107. 107.
    Handbook of Lasers, A.M. Prokhorov (ed.), Vol. 1, Moscow, Sov’et Radio, 1978 (in Russian)Google Scholar
  108. 108.
    P.P. Pronko, P.A. VanRompay, Z. Zhang et al., Isotope enrichment in laser - ablation plumes and commensurately deposited thin films. Phys. Rev. 83, 2596–2599 (1999)Google Scholar
  109. 109.
    M. Joseph, P. Monoravi, Boron isotope enrichment in nanosecond pulsed laser-ablation pume. Appl. Phys. A76, 153–156 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V.  Plekhanov
    • 1
  1. 1.Mathematics and Physics DepartmentComputer Science CollegeTallinnEstonia

Personalised recommendations