Forgetting for Defeasible Logic

  • Grigoris Antoniou
  • Thomas Eiter
  • Kewen Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7180)


The concept of forgetting has received significant interest in artificial intelligence recently. Informally, given a knowledge base, we may wish to forget about (or discard) some redundant parts (such as atoms, predicates, concepts, etc) but still preserve the consequences for certain forms of reasoning. In nonmonotonic reasoning, so far forgetting has been studied only in the context of extension based approaches, mainly answer-set programming. In this paper forgetting is studied in the context of defeasible logic, which is a simple, efficient and sceptical nonmonotonic reasoning approach.


Proof Theory Strict Rule Default Theory Redundant Part Defeasible Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antoniou, G., Bikakis, A.: DR-Prolog: A system for defeasible reasoning with rules and ontologies on the semantic web. IEEE Transactions on Knowledge and Data Engineering 19(2), 233–245 (2007)CrossRefGoogle Scholar
  2. 2.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.: On the modeling and analysis of regulations. In: Proc. Australian Conference Information Systems, pp. 20–29 (1999)Google Scholar
  3. 3.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.: Representation results for defeasible logic. ACM Transactions on Computational Logic 2(2), 255–287 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the semantic web. International Journal of Semantic Web Information Systems 2(1), 1–41 (2006)CrossRefGoogle Scholar
  5. 5.
    Bikakis, A., Antoniou, G.: Defeasible contextual reasoning with arguments in ambient intelligence. IEEE Transactions on Knowledge and Data Engineering 22(11), 1492–1506 (2010)CrossRefGoogle Scholar
  6. 6.
    Billington, D., Antoniou, G., Governatori, G., Maher, M.: An inclusion theorem for defeasible logics. ACM Transactions on Computational Logic 12(1), 6 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artificial Intelligence 14, 1644–1672 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Governatori, G.: Representing business contracts in RuleML. International Journal of Cooperative Information Systems 14(2-3), 181–216 (2005)CrossRefGoogle Scholar
  9. 9.
    Governatori, G., Dumas, M., ter Hofstede, A., Oaks, P.: A formal approach to legal negotiation. In: International Conference on Artificial Intelligence and Law, pp. 168–177 (2001)Google Scholar
  10. 10.
    Governatori, G., Maher, M., Antoniou, G., Billington, D.: Argumentation semantics for defeasible logic. Journal of Logic Computation 14(5), 675–702 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Governatori, G., Padmanabhan, V., Sattar, A.: A Defeasible Logic of Policy-Based Intention (Extended Abstract). In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2557, p. 723. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Governatori, G., Rotolo, A.: Defeasible Logic: Agency, Intention and Obligation. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 114–128. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic. In: Proc. 10th International Conference on Artificial Intelligence and Law, pp. 25–34 (2005)Google Scholar
  14. 14.
    Herzig, A., Mengin, J.: Uniform Interpolation by Resolution in Modal Logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 219–231. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-scale description logic terminologies. In: Proc. 20th International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 830–835 (2009)Google Scholar
  16. 16.
    Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between DL-Lite ontologies? In: Proc. 11th International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 285–295 (2008)Google Scholar
  17. 17.
    Lang, J., Liberatore, P., Marquis, P.: Propositional independence: Formula-variable independence and forgetting. Journal of Artificial Intelligence Research 18, 391–443 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lang, J., Marquis, P.: Resolving inconsistencies by variable forgetting. In: Proc. 8th International Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pp. 239–250 (2002)Google Scholar
  19. 19.
    Lin, F., Reiter, R.: Forget it. In: Proc. AAAI Fall Symposium on Relevance, New Orleans (LA), pp. 154–159 (1994)Google Scholar
  20. 20.
    Maher, M.: Propositional defeasible logic has linear complexity. Theory and Practice of Logic Programming 1(6), 691–711 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Maher, M.: A model-theoretic semantics for defeasible logic. In: Proc. Workshop on Paraconsistent Computational Logic, pp. 67–80 (2002)Google Scholar
  22. 22.
    Maher, M., Antoniou, G., Billington, D.: A Study of Provability in Defeasible Logic. In: Antoniou, G., Slaney, J.K. (eds.) Canadian AI 1998. LNCS, vol. 1502, pp. 215–226. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3. Oxford University Press (1994)Google Scholar
  24. 24.
    Skylogiannis, T., Antoniou, G., Bassiliades, N., Governatori, G.: Dr-negotiate - a system for automated agent negotiation with defeasible logic-based strategies. In: Proc. 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE 2005) on e-Technology, e-Commerce and e-Service, pp. 44–49 (2005)Google Scholar
  25. 25.
    van Ditmarsch, H.P., Herzig, A., Lang, J., Marquis, P.: Introspective Forgetting. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp. 18–29. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Wang, K., Sattar, A., Su, K.: A theory of forgetting in logic programming. In: Proc. 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 682–687 (2005)Google Scholar
  27. 27.
    Wang, K., Wang, Z., Topor, R., Pan, J.Z., Antoniou, G.: Concept and Role Forgetting in \({\mathcal{ALC}}\) Ontologies. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 666–681. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Wang, Z., Wang, K., Topor, R., Pan, J.Z.: Forgetting Concepts in DL-Lite. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 245–257. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Foo, N., Wang, K.: Solving logic program conflicts through strong and weak forgettings. In: Proc. 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 627–632 (2005)Google Scholar
  30. 30.
    Zhang, Y., Zhou, Y.: Knowledge forgetting: Properties and applications. Artificial Intelligence 173(16-17), 1525–1537 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zhou, Y., Zhang, Y.: Bounded forgetting. In: Proc. 25th AAAI Conference on Artificial Intelligence, pp. 280–285 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Grigoris Antoniou
    • 1
    • 2
  • Thomas Eiter
    • 3
  • Kewen Wang
    • 4
  1. 1.FORTH-ICSGreece
  2. 2.University of HuddersfieldUK
  3. 3.Institut für InformationssystemeTechnische Universität WienAustria
  4. 4.School of Information and Communication TechnologyGriffith UniversityAustralia

Personalised recommendations