Lazy Abstraction with Interpolants for Arrays
Abstract
Lazy abstraction with interpolants has been shown to be a powerful technique for verifying imperative programs. In presence of arrays, however, the method shows an intrinsic limitation, due to the fact that successful invariants usually contain universally quantified variables, which are not present in the program specification. In this work we present an extension of the interpolation-based lazy abstraction in which arrays of unknown length can be handled in a natural manner. In particular, we exploit the Model Checking Modulo Theories framework, to derive a backward reachability version of lazy abstraction that embeds array reasoning. The approach is generic, in that it is valid for both parameterized systems and imperative programs. We show by means of experiments that our approach can synthesize and prove universally quantified properties over arrays in a completely automatic fashion.
Keywords
Error Location Program Counter Predicate Abstraction Broadcast Protocol Imperative ProgramPreview
Unable to display preview. Download preview PDF.
References
- 1.Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy Abstraction with Interpolants for Arrays. extended version, http://homes.dsi.unimi.it/~ghilardi/allegati/ABGRS_LPAR.pdf
- 2.Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 384–399. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 3.Carioni, A., Ghilardi, S., Ranise, S.: Automated Termination in Model Checking Modulo Theories. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp. 110–124. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 4.Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 5.Cousot, P., Cousot, R., Logozzo, F.: A Parametric Segmentation Functor for Fully Automatic and Scalable Array Content Analysis. In: POPL (2011)Google Scholar
- 6.Dillig, I., Dillig, T., Aiken, A.: Fluid Updates: Beyond Strong vs. Weak Updates. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 7.Dimitrova, R., Podelski, A.: Is Lazy Abstraction a Decision Procedure for Broadcast Protocols? In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 98–111. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 8.Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL, pp. 191–202 (2002)Google Scholar
- 9.Ghilardi, S., Ranise, S.: Model Checking Modulo Theory at work: the integration of Yices in MCMT. In: AFM (2009)Google Scholar
- 10.Ghilardi, S., Ranise, S.: Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis. LMCS 6(4) (2010)Google Scholar
- 11.Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 12.Gopan, D., Reps, T., Sagiv, M.: A Framework for Numeric Analysis of Array Operations. In: POPL 2005, pp. 338–350 (2005)Google Scholar
- 13.Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- 14.Halbwachs, N., Mathias, P.: Discovering Properties about Arrays in Simple Programs. In: PLDI 2008, pp. 339–348 (2008)Google Scholar
- 15.Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from Proofs. In: POPL, pp. 232–244 (2004)Google Scholar
- 16.Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: POPL, pp. 58–70 (2002)Google Scholar
- 17.Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 18.Kapur, D., Majumdar, R., Zarba, C.: Interpolation for Data Structures. In: SIGSOFT 2006/FSE-14, pp. 105–116 (2006)Google Scholar
- 19.Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 20.McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 21.McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 22.Ranise, S., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2006), http://www.SMT-LIB.org
- 23.Seghir, M.N., Podelski, A., Wies, T.: Abstraction Refinement for Quantified Array Assertions. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 3–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 24.Lahiri, S., Bryant, R.: Predicate Abstraction with Indexed Predicates. TOCL 9(1) (2007)Google Scholar
- 25.Srivastava, S., Gulwani, S.: Program Verification using Templates over Predicate Abstraction. In: PLDI (2009)Google Scholar