Abstract

We introduce the permutative λ-calculus, an extension of λ-calculus with three equations and one reduction rule for permuting constructors, generalising many calculi in the literature, in particular Regnier’s sigma-equivalence and Moggi’s assoc-equivalence. We prove confluence modulo the equations and preservation of beta-strong normalisation (PSN) by means of an auxiliary substitution calculus. The proof of confluence relies on M-developments, a new notion of development for λ-terms.

Keywords

Normal Form Linear Logic Reduction Rule Reduction Sequence Strongly Normalise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Accattoli, B., Kesner, D.: The Structural λ-Calculus. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Accattoli, B., Kesner, D.: Preservation of strong normalisation modulo permutations for the structural calculus. Submitted to LMCS (2011), https://sites.google.com/site/beniaminoaccattoli/PSN-modulo.pdf
  3. 3.
    Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics, Revised edition. North-Holland (1984)Google Scholar
  4. 4.
    David, R.: A short proof that adding some permutation rules to preserves SN. TCS 412(11), 1022–1026 (2011)MATHCrossRefGoogle Scholar
  5. 5.
    de Groote, P.: The Conservation Theorem Revisited. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 163–178. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Espírito Santo, J.: Delayed Substitutions. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 169–183. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Espírito Santo, J.: A note on preservation of strong normalisation in the λ-calculus. TCS 412(11), 1027–1032 (2011)MATHCrossRefGoogle Scholar
  8. 8.
    Girard, J.-Y.: Linear logic. TCS 50 (1987)Google Scholar
  9. 9.
    Hindley, J.R.: Reductions of residuals are finite. Transactions of the American Mathematical Society 240, 345–361 (1978)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kamareddine, F.: Postponement, conservation and preservation of strong normalization for generalized reduction. JLC 10(5), 721–738 (2000)MathSciNetMATHGoogle Scholar
  11. 11.
    Kesner, D.: A theory of explicit substitutions with safe and full composition. LMCS 5(3:1), 1–29 (2009)MathSciNetGoogle Scholar
  12. 12.
    Kfoury, A.J., Wells, J.B.: New notions of reduction and non-semantic proofs of beta-strong normalization in typed lambda-calculi. In: LICS, pp. 311–321. IEEE Computer Society Press (1995)Google Scholar
  13. 13.
    Klop, J.-W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: introduction and survey. TCS 121(1/2), 279–308 (1993)MATHCrossRefGoogle Scholar
  14. 14.
    Lengrand, S.: Termination of lambda-calculus with the extra call-by-value rule known as assoc. CoRR, abs/0806.4859 (2008)Google Scholar
  15. 15.
    Lévy, J.-J.: Réductions correctes et optimales dans le lambda-calcul. PhD thesis, Univ. Paris VII, France (1978)Google Scholar
  16. 16.
    Moggi, E.: Computational lambda-calculus and monads. In: LICS, pp. 14–23. IEEE Computer Society Press (1989)Google Scholar
  17. 17.
    Regnier, L.: Une équivalence sur les lambda-termes. TCS 2(126), 281–292 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sabry, A., Felleisen, M.: Reasoning about programs in continuation-passing style. In: LFP, pp. 288–298. ACM, New York (1992)CrossRefGoogle Scholar
  19. 19.
    Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press (2003)Google Scholar
  20. 20.
  21. 21.
    Espírito Santo, J., Matthes, R., Pinto, L.: Monadic Translation of Intuitionistic Sequent Calculus. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 100–116. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Beniamino Accattoli
    • 1
  • Delia Kesner
    • 2
  1. 1.INRIA and LIX, École PolytechniqueFrance
  2. 2.PPS, CNRS and Université Paris-DiderotFrance

Personalised recommendations