Skip to main content

Enfragmo: A System for Modelling and Solving Search Problems with Logic

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7180))

Abstract

In this paper, we present the Enfragmo system for specifying and solving combinatorial search problems. It supports natural specification of problems by providing users with a rich language, based on an extension of first order logic. Enfragmo takes as input a problem specification and a problem instance and produces a propositional CNF formula representing solutions to the instance, which is sent to a SAT solver. Because the specification language is high level, Enfragmo provides combinatorial problem solving capability to users without expertise in use of SAT solvers or algorithms for solving combinatorial problems. Here, we describe the specification language and implementation of Enfragmo, and give experimental evidence that its performance is comparable to that of related systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.cs.sfu.ca/research/groups/mxp/

  2. Mitchell, D., Ternovska, E.: A framework for representing and solving NP search problems. In: Proc. AAAI, pp. 430–435 (2005)

    Google Scholar 

  3. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. Complexity of Computation, 43–74 (1974)

    Google Scholar 

  4. Ternovska, E., Mitchell, D.: Declarative programming of search problems with built-in arithmetic. In: Proc. of IJCAI, pp. 942–947 (2009)

    Google Scholar 

  5. Tasharrofi, S., Ternovska, E.: Built-in arithmetic in knowledge representation languages. In: NonMon at 30 (Thirty Years of Nonmonotonic Reasoning) (October 2010)

    Google Scholar 

  6. Tasharrofi, S., Ternovska, E.: PBINT, A Logic for Modelling Search Problems Involving Arithmetic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 610–624. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Aavani, A., Wu, X(N.), Ternovska, E., Mitchell, D.: Grounding Formulas with Complex Terms. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 13–25. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Aavani, A., Tasharrofi, S., Unel, G., Ternovska, E., Mitchell, D.: Speed-Up Techniques for Negation in Grounding. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 13–26. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Mohebali, R.: A method for solving NP search problems based on model expansion and grounding. Master’s thesis, Simon Fraser University (2006)

    Google Scholar 

  10. Aavani, A., Wu, X., Mitchell, D., Ternovska, E.: Grounding Cardinality Constraints. In: LPAR-16 Short Paper (2010)

    Google Scholar 

  11. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Studies in Mathematics and Mathematical Logic, 115–125 (1968)

    Google Scholar 

  12. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The Second Answer Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Aavani, A.: Translating Pseudo-Boolean Constraints into CNF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 357–359. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 105–124 (2011)

    MathSciNet  Google Scholar 

  15. Dell’Armi, T., Faber, W., Ielpa, G., Koch, C., Leone, N., Perri, S., Pfeifer, G.: System Description: DLV. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 424–428. Springer, Heidelberg (2001)

    Google Scholar 

  16. Wittocx, J., Marién, M., Denecker, M.: The IDP system: A model expansion system for an extension of classical logic. In: Proceedings of the 2nd Workshop on Logic and Search, pp. 153–165 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aavani, A., Wu, X.(., Tasharrofi, S., Ternovska, E., Mitchell, D. (2012). Enfragmo: A System for Modelling and Solving Search Problems with Logic. In: Bjørner, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2012. Lecture Notes in Computer Science, vol 7180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28717-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28717-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28716-9

  • Online ISBN: 978-3-642-28717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics