Solving Graded/Probabilistic Modal Logic via Linear Inequalities (System Description)

  • William Snell
  • Dirk Pattinson
  • Florian Widmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7180)


We present the experience gained from implementing a new decision procedure for both graded and probabilistic modal logic. While our approach uses standard tableaux for propositional connectives, modal rules are given by linear constraints on the arguments of operators. The implementation uses binary decision diagrams for propositional connectives and a linear programming library for the modal rules. We compare our implementation, for graded modal logic, with other tools, showing average performance. Due to lack of other implementations, no comparison is provided for probabilistic modal logic, the main new feature of our implementation.


Modal Logic Description Logic Linear Inequality Modal Rule Propositional Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Nutt, W.: Basic description logics. In: Baader, F., et. al. (ed.) Description Logic Handbook, pp. 43–95. Cambridge University Press (2003)Google Scholar
  2. 2.
    Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams. ACM Computing Surveys 24(3), 293–317 (1992)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Calin, G., Myers, R., Pattinson, D., Schröder, L.: COLOSS: The coalgebraic logic satisfiability solver. In: Proc. M4M 5 (2007). ENTCS, vol. 231, pp. 41–54 (2009)Google Scholar
  5. 5.
    D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Logic 41, 267–298 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled markov processes. Inf. Comput. 179(2), 163–193 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41, 340–367 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Farsiniamarj, N., Haarslev, V.: Practical reasoning with qualified number restrictions: a hybrid Abox calculus for the description logic SHQ. AI Comms. 23(2–3), 205–240 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    GNU linear programming kit (glpk),
  11. 11.
    Haarslev, V., Möller, R.: RACER System Description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Haarslev, V., Sebastiani, R., Vescovi, M.: Automated Reasoning in \(\mathcal{ALCQ}\) via SMT. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 283–298. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Automatic Verification of Probabilistic Systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Klinov, P.: Practical Reasoning in Probabilistic Description Logic. PhD thesis, University of Manchester, Manchester, UK (2011)Google Scholar
  15. 15.
    Kupke, C., Pattinson, D.: On modal logics of linear inequalities. In: Goranko, V., Shehtman, V. (eds.) Proc. AiML 2010. College Publications (2010)Google Scholar
  16. 16.
    Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Journal of Artificial Intelligence Research 36, 165–228 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Parma, A., Segala, R.: Logical Characterizations of Bisimulations for Discrete Probabilistic Systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 287–301. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Schrijver, A.: Theory of linear and integer programming. Wiley Interscience (1986)Google Scholar
  19. 19.
    Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Transactions on Computational Logics 10(2) (2009)Google Scholar
  20. 20.
    Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner. Journal of Web Semantics (2006)Google Scholar
  21. 21.
    Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • William Snell
    • 1
  • Dirk Pattinson
    • 1
  • Florian Widmann
    • 1
  1. 1.Dept. of ComputingImperial CollegeLondonUK

Personalised recommendations