An Asymptotically Correct Finite Path Semantics for LTL

  • Andreas Morgenstern
  • Manuel Gesell
  • Klaus Schneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7180)

Abstract

Runtime verification of temporal logic properties requires a definition of the truth value of these properties on the finite paths that are observed at runtime. However, while the semantics of temporal logic on infinite paths has been precisely defined, there is not yet an agreement on the definition of the semantics on finite paths. Recently, it has been observed that the accuracy of runtime verification can be improved by a 4-valued semantics of temporal logic on finite paths. However, as we argue in this paper, even a 4-valued semantics is not sufficient to achieve a semantics on finite paths that converges to the semantics on infinite paths. To overcome this deficiency, we consider in this paper Manna and Pnueli’s temporal logic hierarchy consisting of safety, liveness (guarantee), co-Büchi (persistence), and Büchi (recurrence) properties. We propose the use of specialized semantics for each of these subclasses to improve the accuracy of runtime verification. In particular, we prove that our new semantics converges to the infinite path semantics which is an important property that has not been achieved by previous approaches.

Keywords

Temporal Logic Linear Temporal Logic Conjunctive Normal Form Linear Temporal Logic Formula Specialized Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armoni, R., Bustan, D., Kupferman, O., Vardi, M.: Resets vs. Aborts in Linear Temporal Logic. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 65–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bauer, A., Leucker, M., Schallhart, C.: The Good, the Bad, and the Ugly, But How Ugly Is Ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 126–138. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. Journal of Logic and Computation 20(3), 651–674 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Transactions on Software Engineering and Methodology (2011)Google Scholar
  5. 5.
    Chang, E., Manna, Z., Pnueli, A.: Characterization of Temporal Property Classes. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 474–486. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., van Campenhout, D.: Reasoning with Temporal Logic on Truncated Paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science: Formal Models and Semantics, vol. B, ch.16, pp. 995–1072. Elsevier (1990)Google Scholar
  8. 8.
    Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at runtime? Research Report TR-2010-5, Verimag (January 2010)Google Scholar
  9. 9.
    Maler, O., Pnueli, A.: Timing Analysis of Asynchronous Circuits Using Timed Automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 189–205. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Miyano, S., Hayashi, T.: Alternating automata on ω-words. Theoretical Computer Science (TCS) 32, 321–330 (1984)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Morgenstern, A., Schneider, K., Lamberti, S.: Generating deterministic ω-automata for most LTL formulas by the breakpoint construction. In: Scholl, C., Disch, S. (eds.) Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV), Freiburg, Germany, pp. 119–128. Shaker (2008)Google Scholar
  12. 12.
    Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science (FOCS), pp. 46–57. IEEE Computer Society, Providence (1977)Google Scholar
  13. 13.
    Pnueli, A., Zaks, A.: PSL Model Checking and Run-Time Verification Via Testers. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Ruf, J., Hoffmann, D., Kropf, T., Rosenstiel, W.: Simulation-guided property checking based on a multi-valued AR-automata. In: Design, Automation and Test in Europe (DATE), Munich, Germany, pp. 742–748. ACM (2001)Google Scholar
  15. 15.
    Schneider, K.: Improving Automata Generation for Linear Temporal Logic by Considering the Automaton Hierarchy. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 39–54. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Schneider, K.: Verification of Reactive Systems – Formal Methods and Algorithms. Texts in Theoretical Computer Science (EATCS Series). Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Morgenstern
    • 1
  • Manuel Gesell
    • 1
  • Klaus Schneider
    • 1
  1. 1.Embedded Systems Group, Department of Computer ScienceUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations