Advertisement

Conflict Anticipation in the Search for Graph Automorphisms

  • Hadi Katebi
  • Karem A. Sakallah
  • Igor L. Markov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7180)

Abstract

Effective search for graph automorphisms allows identifying symmetries in many discrete structures, ranging from chemical molecules to microprocessor circuits. Using this type of structure can enhance visualization as well as speed up computational optimization and verification. Competitive algorithms for the graph automorphism problem are based on efficient partition refinement augmented with group-theoretic pruning techniques. In this paper, we improve prior algorithms for the graph automorphism problem by introducing simultaneous refinement of multiple partitions, which enables the anticipation of future conflicts in search and leads to significant pruning, reducing overall runtimes. Empirically, we observe an exponential speedup for the family of Miyazaki graphs, which have been shown to impede leading graph-automorphism algorithms.

Keywords

Search Tree Sparse Graph Search Node Graph Automorphism Application Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: Efficient symmetry-breaking for boolean satisfiability. In: Proc. 40th IEEE/ACM Design Automation Conference (DAC), Anaheim, California, pp. 836–839 (2003)Google Scholar
  3. 3.
    Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult sat instances in the presence of symmetry. In: Proc. 39th IEEE/ACM Design Automation Conference (DAC), New Orleans, Louisiana, pp. 731–736 (2002)Google Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In: USENIX Annual Technical Conference, pp. 1–13 (2000)Google Scholar
  8. 8.
  9. 9.
    Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in symmetry detection for CNF. In: Proc. 41st IEEE/ACM Design Automation Conference (DAC), San Diego, California, pp. 530–534 (2004)Google Scholar
  10. 10.
    Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of symmetries. In: Proc. 45th IEEE/ACM Design Automation Conference (DAC), Anaheim, California, pp. 149–154 (2008)Google Scholar
  11. 11.
    Fraleigh, J.B.: A First Course in Abstract Algebra, 6th edn. Addison Wesley Longman, Reading (2000)Google Scholar
  12. 12.
    Govindan, R., Tangmunarunkit, H.: Heuristics for internet map discovery. In: IEEE INFOCOM, pp. 1371–1380 (2000)Google Scholar
  13. 13.
    Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Ninth Workshop on Algorithm Engineering and Experiments (ALENEX 2007), New Orleans, LA (2007)Google Scholar
  14. 14.
    Junttila, T., Kaski, P.: Conflict Propagation and Component Recursion for Canonical Labeling. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 151–162. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Katebi, H., Sakallah, K.A., Markov, I.L.: Symmetry and satisfiability: An update. In: Proc. Satisfiability Symposium (SAT), Edinburgh, Scotland (2010)Google Scholar
  17. 17.
    Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80, 016118 (2009)CrossRefGoogle Scholar
  18. 18.
    McKay, B.D.: nauty user’s guide (version 2.2), http://cs.anu.edu.au/~bdm/nauty/nug.pdf
  19. 19.
    Brendan, D.: McKay. Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)MathSciNetGoogle Scholar
  20. 20.
    Miyazaki, T.: The complexity of McKay’s canonical labeling algorithm, p. 239. Amer. Mathematical Society (1997)Google Scholar
  21. 21.
  22. 22.
    Tener, G., Deo, N.: Efficient isomorphism of miyazaki graphs. In: 39th Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL (2008)Google Scholar
  23. 23.
    Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and vliw microprocessors. In: Proc. Design Automation Conference (DAC), New Orleans, Louisiana, pp. 226–231 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hadi Katebi
    • 1
  • Karem A. Sakallah
    • 1
  • Igor L. Markov
    • 1
  1. 1.EECS DepartmentUniversity of MichiganUSA

Personalised recommendations