Advertisement

Dual-Priced Modal Transition Systems with Time Durations

  • Nikola Beneš
  • Jan Křetínský
  • Kim Guldstrand Larsen
  • Mikael H. Møller
  • Jiří Srba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7180)

Abstract

Modal transition systems are a well-established specification formalism for a high-level modelling of component-based software systems. We present a novel extension of the formalism called modal transition systems with durations where time durations are modelled as controllable or uncontrollable intervals. We further equip the model with two kinds of quantitative aspects: each action has its own running cost per time unit, and actions may require several hardware components of different costs. We ask the question, given a fixed budget for the hardware components, what is the implementation with the cheapest long-run average reward. We give an algorithm for computing such optimal implementations via a reduction to a new extension of mean payoff games with time durations and analyse the complexity of the algorithm.

Keywords

Time Duration Investment Cost Outgoing Edge Hardware Component Atomic Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Fábregas, I., de Frutos-Escrig, D., Ingólfsdóttir, A., Palomino, M.: Graphical representation of covariant-contravariant modal formulae. In: EXPRESS. EPTCS, vol. 64, pp. 1–15 (2011)Google Scholar
  2. 2.
    Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal and mixed specifications. Bulletin of the EATCS (95), 94–129 (2008)Google Scholar
  3. 3.
    Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.R.: Quantitative Refinement for Weighted Modal Transition Systems. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 60–71. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced Timed Automata: Algorithms and Applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004. LNCS, vol. 3657, pp. 162–182. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Beneš, N., Křetínský, J.: Process algebra for modal transition systemses. In: MEMICS. OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)Google Scholar
  6. 6.
    Beneš, N., Křetínský, J., Larsen, K., Møller, M., Srba, J.: Parametric Modal Transition Systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 275–289. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Beneš, N., Křetínský, J., Larsen, K., Møller, M., Srba, J.: Dual-priced modal transition systems with time durations. Tech. Rep. FIMU-RS-2012-01, Faculty of Informatics MU (2012)Google Scholar
  8. 8.
    Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems. In: Proc. of FMCAD 2009, pp. 85–92. IEEE (2009)Google Scholar
  9. 9.
    Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theor. Comput. Sci. 106(1), 3–20 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced timed automata. Formal Methods in System Design 32(1), 3–23 (2008)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in Weighted Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International Journal of Game Theory 8, 109–113 (1979), doi:10.1007/BF01768705MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Juhl, L., Larsen, K.G., Srba, J.: Introducing modal transition systems with weight intervals. Journal of Logic and Algebraic Programming (2011) Google Scholar
  16. 16.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE Computer Society (1988)Google Scholar
  17. 17.
    Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS, pp. 108–117. IEEE Computer Society (1990)Google Scholar
  18. 18.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nikola Beneš
    • 2
  • Jan Křetínský
    • 2
    • 3
  • Kim Guldstrand Larsen
    • 1
  • Mikael H. Møller
    • 1
  • Jiří Srba
    • 1
  1. 1.Aalborg UniversityDenmark
  2. 2.Masaryk UniversityCzech Republic
  3. 3.Technical University MünchenGermany

Personalised recommendations