Rough Non-deterministic Information Analysis: Foundations and Its Perspective in Machine Learning

Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 13)


This chapter focuses on a mathematical framework for handling information incompleteness, which is deeply related to machine learning. Recently, the handling of the information incompleteness in data sets is recognized to be very important research area for machine learning. We have already proposed a framework RoughNon − deterministicInformationAnalysis (RNIA). This is a rough sets based framework for handling not only definite (or complete) information but also indefinite (or incomplete) information. This RNIA handles lots of aspects in tables with the information incompleteness, i.e., rough sets based issues, data dependencies, question-answering, rule generation, estimation of actual values, etc. Each aspect is extended from tables with complete information to tables with incomplete information according to the modal concepts. We survey this RNIA, and we describe the perspective of RNIA with respect to machine learning.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB 1994, pp. 487–499. Morgan Kaufmann (1994)Google Scholar
  2. 2.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)Google Scholar
  3. 3.
    Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problem. In: Rough Set Methods and Applications. STUDFUZZ, vol. 56, pp. 49–88. Springer (2000)Google Scholar
  4. 4.
    Blaszczynski, J., Greco, S., Słowiński, R.: Multi-criteria classification - a new scheme for application of dominance-based decision rules. European Journal of Operational Research 181(3), 1030–1044 (2007)MATHCrossRefGoogle Scholar
  5. 5.
    Ceglar, A., Roddick, J.F.: Association mining. ACM Computing Survey 38(2) (2006)Google Scholar
  6. 6.
    Chmielewski, M.R., Grzymała-Busse, J.W.: Global discretization of continuous attributes as preprocessing for machine learning. International Journal of Approximate Reasoning 15(4), 319–331 (1996)MATHCrossRefGoogle Scholar
  7. 7.
    Codd, E.F.: A relational model of data for large shared data banks. Communication of the ACM 13(6), 377–387 (1970)MATHCrossRefGoogle Scholar
  8. 8.
    Cornelis, C., Jensen, R., Martín, G.H., Ślęzak, D.: Attribute selection with fuzzy decision reducts. Information Sciences 180(2), 209–224 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. Monographs in Theoretical Computer Science. An EATCS Series. Springer (2002)Google Scholar
  10. 10.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository, School of Information and Computer Science, University of California, Irvine, CA (2010),
  11. 11.
    Greco, S., Matarazzo, B., Słowiński, R.: Granular computing and data mining for ordered data: The dominance-based rough set approach. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 4283–4305. Springer (2009)Google Scholar
  12. 12.
    Grzymała-Busse, J.W.: A new version of the rule induction system LERS. Fundamenta Informaticae 31(1), 27–39 (1997)MATHGoogle Scholar
  13. 13.
    Grzymała-Busse, J.W., Werbrouck, P.: On the best search method in the lem1 and lem2 algorithms. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis. STUDFUZZ, vol. 13, pp. 75–91. Springer (1998)Google Scholar
  14. 14.
    Grzymała-Busse, J.W., Stefanowski, J.: Three discretization methods for rule induction. International Journal of Intelligent Systems 16(1), 29–38 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Grzymała-Busse, J.W.: Data with missing attribute values: Generalization of indiscernibility relation and rule induction. Transactions on Rough Sets 1, 78–95 (2004)CrossRefGoogle Scholar
  16. 16.
    Huynh, V.N., Nakamori, Y., Ono, H., Lawry, J., Kreinovich, V., Nguyen, H.T. (eds.): Interval / Probabilistic Uncertainty and Non-Classical Logics. AISC, vol. 46. Springer (2008)Google Scholar
  17. 17.
    Huynh, V.N., Nakamori, Y., Hu, C., Kreinovich, V.: On decision making under interval uncertainty: A new justification of hurwicz optimism-pessimism approach and its use in group decision making. In: ISMVL 2009, pp. 214–220. IEEE Computer Society (2009)Google Scholar
  18. 18.
    Inuiguchi, M., Yoshioka, Y., Kusunoki, Y.: Variable-precision dominance-based rough set approach and attribute reduction. International Journal of Approximate Reasoning 50(8), 1199–1214 (2009)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Method for Decision Making, pp. 3–98. Springer (1999)Google Scholar
  20. 20.
    Kryszkiewicz, M., Rybinski, H.: Computation of reducts of composed information systems. Fundamenta Informaticae 27(2-3), 183–195 (1996)MathSciNetMATHGoogle Scholar
  21. 21.
    Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112(1-4), 39–49 (1998)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113(3-4), 271–292 (1999)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Leung, Y., Fischer, M.M., Wu, W.Z., Mi, J.S.: A rough set approach for the discovery of classification rules in interval-valued information systems. International Journal of Approximate Reasoning 47(2), 233–246 (2008)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Lipski, W.: On semantic issues connected with incomplete information databases. ACM Transactions on Database Systems 4(3), 262–296 (1979)CrossRefGoogle Scholar
  25. 25.
    Lipski, W.: On databases with incomplete information. Journal of the ACM 28(1), 41–70 (1981)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Murai, T., Resconi, G., Nakata, M., Sato, Y.: Operations of zooming in and out on possible worlds for semantic fields. In: Damiani, L.J.E., Howlett, R.J., Ichalkaranje, N. (eds.): Knowledge-Based Intelligent Information Engineering Systems and Allied Technologies. KES 2004, Frontiers in Artificial Intelligence and Applications, vol. 82, pp. 1083–1087. IOS Press (2002)Google Scholar
  27. 27.
    Nakamura, A.: A rough logic based on incomplete information and its application. International Journal of Approximate Reasoning 15(4), 367–378 (1996)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Nakamura, A., Tsumoto, S., Tanaka, H., Kobayashi, S.: Rough set theory and its applications. Journal of Japanese Society for Artificial Intelligence 11(2), 209–215 (1996)Google Scholar
  29. 29.
    Nakata, M., Sakai, H.: Rough-set-based approaches to data containing incomplete information: possibility-based cases. In: Nakamatsu, K., Abe, J.M. (eds.) Advances in Logic Based Intelligent Systems, Frontiers in Artificial Intelligence and Applications, vol. 132, pp. 234–241. IOS Press (2005)Google Scholar
  30. 30.
    Nakata, M., Sakai, H.: Lower and upper approximations in data tables containing possibilistic information. Transactions on Rough Sets 7, 170–189 (2007)MathSciNetGoogle Scholar
  31. 31.
    Nakata, M., Sakai, H.: Applying Rough Sets to Information Tables Containing Possibilistic Values. Transactions on Computational Science 2, 180–204 (2008)CrossRefGoogle Scholar
  32. 32.
    Orłowska, E., Pawlak, Z.: Representation of nondeterministic information. Theoretical Computer Science 29(1-2), 27–39 (1984)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Orłowska, E. (ed.): Incomplete Information: Rough Set Analysis. STUDFUZZ, vol. 13. Springer (1998)Google Scholar
  34. 34.
    Orłowska, E.: Introduction: What you always wanted to know about rough sets. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis. STUDFUZZ, vol. 13, pp. 1–20. Springer (1998)Google Scholar
  35. 35.
    Orłowska, E.: A roadmap of information logics and information algebras inspired by rough sets. In: Plenary Workshop in Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (2005)Google Scholar
  36. 36.
    Pawlak, Z.: Information systems theoretical foundations. Information Systems 6(3), 205–218 (1981)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Pawlak, Z.: Systemy Informacyjne: Podstawy teoretyczne. Wydawnictwa Naukowo-Techniczne Publishers (1983)Google Scholar
  38. 38.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers (1991)Google Scholar
  39. 39.
    Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  40. 40.
    Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. Wiley (2008)Google Scholar
  41. 41.
    Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 1: Methodology and Applications. STUDFUZZ, vol. 18. Springer (1998)Google Scholar
  42. 42.
    Polkowski, L., Skowron, A. (eds.): Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. STUDFUZZ, vol. 19. Physica-Verlag (1998)Google Scholar
  43. 43.
    Quinlan, J.R.: Improved use of continuous attributes in C4.5. The Journal of Artificial Intelligence Research 4, 77–90 (1996)MATHGoogle Scholar
  44. 44.
    Sakai, H.: On a Framework for logic programming with incomplete information. Fundamenta Informaticae 19(3/4), 223–234 (1993)MathSciNetMATHGoogle Scholar
  45. 45.
    Sakai, H., Okuma, A.: An Algorithm for Finding Equivalence Relations from Tables with Non-Deterministic Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 64–73. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  46. 46.
    Sakai, H., Okuma, A.: An Algorithm for Checking Dependencies of Attributes in a Table with Non-Deterministic Information: A Rough Sets Based Approach. In: Mizoguchi, R., Slaney, J.K. (eds.) PRICAI 2000. LNCS(LNAI), vol. 1886, pp. 219–229. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  47. 47.
    Sakai, H., Okuma, A.: On a theorem prover for variational logic programs with functors setu and sets. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(1), 73–92 (2000)MathSciNetMATHGoogle Scholar
  48. 48.
    Sakai, H.: Effective procedures for handling possible equivalence relations in non-deterministic information systems. Fundamenta Informaticae 48(4), 343–362 (2001)MathSciNetGoogle Scholar
  49. 49.
    Sakai, H.: Effective procedures for data dependencies in information systems. In: Inuiguchi, M., Tsumoto, S., Hirano, S. (eds.) Rough Set Theory and Granular Computing. STUDFUZZ, vol. 125, pp. 167–176. Springer (2003)Google Scholar
  50. 50.
    Sakai, H., Okuma, A.: Basic Algorithms and Tools for Rough Non-Deterministic Information Analysis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 209–231. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  51. 51.
    Sakai, H.: Possible Equivalence Relations and their Application to Hypothesis Generation in Non-Deterministic Information Systems. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 82–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  52. 52.
    Sakai, H., Murai, T., Nakata, M.: On a Tool for Rough Non-Deterministic Information Analysis and its Perspective for Handling Numerical Data. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 203–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  53. 53.
    Sakai, H., Nakata, M.: Discernibility Functions and Minimal Rules in Non-Deterministic Information Systems. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 254–264. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  54. 54.
    Sakai, H.: On a Rough Sets Based Data Mining Tool in Prolog: An Overview. In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 48–65. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  55. 55.
    Sakai, H., Nakata, M.: An application of discernibility functions to generating minimal rules in non-deterministic information systems. Journal of Advanced Computational Intelligence and Intelligent Informatics 10(5), 695–702 (2006)Google Scholar
  56. 56.
    Sakai, H., Nakata, M.: On Possible Rules and Apriori Algorithm in Non-Deterministic Information Systems. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 264–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  57. 57.
    Sakai, H., Ishibashi, R., Koba, K., Nakata, M.: Rules and Apriori Algorithm in Non-Deterministic Information Systems. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 328–350. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  58. 58.
    Sakai, H., Koba, K., Nakata, M.: Rough sets based rule generation from data with categorical and numerical values. Journal of Advanced Computational Intelligence and Intelligent Informatics 12(5), 426–434 (2008)Google Scholar
  59. 59.
    Sakai, H., Hayashi, K., Nakata, M., Ślęzak, D.: The Lower System, the Upper System and Rules with Stability Factor in Non-Deterministic Information Systems. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS(LNAI), vol. 5908, pp. 313–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  60. 60.
    Sakai, H., Hayashi, K., Kimura, H., Nakata, M.: An Aspect of Decision Making in Rough Non-Deterministic Information Analysis. In: Nakamatsu, K., Phillips-Wren, G., Jain, L.C., Howlett, R.J. (eds.) New Advances in Intelligent Decision Technologies. SCI, vol. 199, pp. 527–536. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  61. 61.
    Sakai, H., Nakata, M., Ślęzak, D.: Rule Generation in Lipski’s Incomplete Information Databases. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS(LNAI), vol. 6086, pp. 376–385. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  62. 62.
    Sakai, H., Okuma, H., Nakata, M., Ślęzak, D.: Stable rule extraction and decision making in rough non-deterministic information analysis. International Journal of Hybrid Intelligent Systems 8(1), 41–57 (2011)MATHGoogle Scholar
  63. 63.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Słowiński, R. (ed.) Intelligent Decision Support - Handbook of Advances and Applications of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers (1992)Google Scholar
  64. 64.
    Ślęzak, D.: Rough sets and functional dependencies in data: Foundations of association reducts. Transactions on Computational Science 5, 182–205 (2009)Google Scholar
  65. 65.
    Ślęzak, D., Sakai, H.: Automatic Extraction of Decision Rules from Non-Deterministic Data Systems: Theoretical Foundations and SQL-Based Implementation. In: Ślęzak, D., Kim, T.-h., Zhang, Y., Ma, J., Chung, K.-i. (eds.) DTA 2009. CCIS, vol. 64, pp. 151–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  66. 66.
    Stefanowski, J., Tsoukiàs, A.: On the Extension of Rough Sets Under Incomplete Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–82. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  67. 67.
    Stefanowski, J., Tsoukiàs, A.: Incomplete information tables and rough classification. Computational Intelligence 17(3), 545–566 (2001)CrossRefGoogle Scholar
  68. 68.
    Tsumoto, S.: Knowledge discovery in clinical databases and evaluation of discovered knowledge in outpatient clinic. Information Sciences 124(1-4), 125–137 (2000)CrossRefGoogle Scholar
  69. 69.
    Yang, X., Yu, D., Yang, J., Wei, L.: Dominance-based rough set approach to incomplete interval-valued information system. Data & Knowledge Engineering 68(11), 1331–1347 (2009)CrossRefGoogle Scholar
  70. 70.
    Yao, Y(Y.Y.), Liau, C.-J., Zhong, N.: Granular Computing Based on Rough Sets, Quotient Space Theory, and Belief Functions. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 152–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  71. 71.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90(2), 111–127 (1997)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46(1), 39–59 (1993)MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
  74. 74.
  75. 75.
  76. 76.
    Rough Set Software, Bulletin of Int’l Rough Set Society 2(1), 15–46 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Basic Sciences, Faculty of EngineeringKyushu Institute of TechnologyTobataJapan
  2. 2.Faculty of Education and Welfare ScienceOita UniversityDannoharuJapan
  3. 3.Faculty of Management and Information ScienceJosai International UniversityToganeJapan

Personalised recommendations