Advertisement

Evolving Intelligent Systems: Methods, Algorithms and Applications

  • Andre Lemos
  • Walmir Caminhas
  • Fernando Gomide
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 13)

Abstract

Evolving intelligent systems (EIS) are highly adaptive systems able to update its own parameters and structure based on a date stream. These systems have been developed to address problems of modeling, control, prediction, classification and data processing in a nonstationary, dynamic changing environment. Pioneers works in this area are dated from the around the turn of the centuries and were focused in areas of neural networks, fuzzy rule-based systems and neural-fuzzy hybrids. In this century the area has been expanded to also address statistical models, hardware implementations and so on. The aim of this chapter is to provide an introduction and a state of the art view about this subject. The purpose is to present the paradigm and the associated concepts, address the main learning approaches, and detail recently developed models based on participatory learning and fuzzy trees.

Keywords

Membership Function Fuzzy Neural Network Load Forecast Arousal Index Consequent Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abonyi, J., Babuska, R., Szeifert, F.: Modified gath-geva fuzzy clustering for identification of takagi-sugeno fuzzy models. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics) 32(5), 612–621 (2002), doi:10.1109/TSMCB.2002.1033180CrossRefGoogle Scholar
  2. 2.
    Allen, M.P.: Understanding Regression Analysis, 1st edn. Springer (1997)Google Scholar
  3. 3.
    Angelov, P.: Evolving takagi-sugeno fuzzy systems from streaming data, ets+. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications. Wiley-Interscience/IEEE Press (2010)Google Scholar
  4. 4.
    Angelov, P., Buswell, R.: Evolving rule-based models: A tool for intelligent adaptation. In: Joint 9th IFSA World Congress and 20th NAFIPS International Conference, vol. 2, pp. 1062–1067 (2001)Google Scholar
  5. 5.
    Angelov, P., Filev, D.: An approach to Online identification of Takagi-Suigeno fuzzy models. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 34(1), 484–498 (2004)CrossRefGoogle Scholar
  6. 6.
    Angelov, P., Filev, D.: Simpl_ets: a simplified method for learning evolving takagi-sugeno fuzzy models. In: The 14th IEEE International Conference on Fuzzy Systems, FUZZ 2005, pp. 1068–1073 (2005)Google Scholar
  7. 7.
    Angelov, P., Kordon, A.: Adaptive inferential sensors based on evolving fuzzy models. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40(2), 529–539 (2010), doi:10.1109/TSMCB.2009.2028315CrossRefGoogle Scholar
  8. 8.
    Angelov, P., Lughofer, E., Zhou, X.: Evolving fuzzy classifiers using different model architectures. Fuzzy Sets and Systems 159(23), 3160–3182 (2008), doi:10.1016/j.fss.2008.06.019MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Angelov, P., R., Ramezani, X.Z.: Autonomous novelty detection and object tracking in video streams using evolving clustering and takagi-sugeno type neuro-fuzzy system. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp. 1456–1463 (2008)Google Scholar
  10. 10.
    Angelov, P., Zhou, X.: Evolving fuzzy systems from data streams in real-time. In: 2006 International Symposium on Evolving Fuzzy Systems, pp. 29–35 (2006)Google Scholar
  11. 11.
    Angelov, P.P.: Evolving rule-based models: a tool for design of flexible adaptive systems. Springer, London (2002)zbMATHGoogle Scholar
  12. 12.
    Astrom, K., Wittenmark, B.: Adaptive Systems, 1st edn. Addison-Wesley, USA (1988)Google Scholar
  13. 13.
    Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day, Incorporated (1990)Google Scholar
  14. 14.
    Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees. Wadsworth Mathematics Series, San Diego, California (1984)Google Scholar
  15. 15.
    Chiu, S.L.: Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems 2(3) (1994)Google Scholar
  16. 16.
    Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy. Journal of Business and Economics Statistics 13, 253–263 (1995)Google Scholar
  17. 17.
    Dobra, A., Gehrke, J.: Secret: a scalable linear regression tree algorithm. In: KDD 2002: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 481–487. ACM, New York (2002), http://doi.acm.org/10.1145/775047.775117 CrossRefGoogle Scholar
  18. 18.
    Er, M.J., Wu, S.: A fast learning algorithm for parsimonious fuzzy neural systems. Fuzzy Sets and Systems 126(3), 337 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Filev, D.P., Tseng, F.: Novelty detection based machine health prognostics. In: 2006 International Symposium on Evolving Fuzzy Systems, pp. 193–199 (2006)Google Scholar
  20. 20.
    Fritzke, B.: Growing cell structures: a self-organizing network for unsupervised and supervised learning. Neural Networks 7, 1441–1460 (1994), doi:10.1016/0893-6080(94)90091-4CrossRefGoogle Scholar
  21. 21.
    Gray, R.: Vector quantization. IEEE ASSP Magazine 1(2), 4–29 (1984)CrossRefGoogle Scholar
  22. 22.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, Berlin (2001)zbMATHGoogle Scholar
  23. 23.
    Hirota, K., Pedrycz, W.: D-fuzzy clustering. Pattern Recogn. Lett. 16, 193–200 (1995), doi:10.1016/0167-8655(94)00090-PCrossRefGoogle Scholar
  24. 24.
    Hisada, M., Ozawa, S., Zhang, K., Kasabov, N.: Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems. Evolving Systems 1, 17–27 (2010)CrossRefGoogle Scholar
  25. 25.
    Hyndman, R.J.: Time series data library (2010), http://robjhyndman.com/TSDL
  26. 26.
    Ikonomovska, E., Gama, J.: Learning model trees from data streams. In: Boulicaut, J.-F., Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 52–63. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-88411-8_8 CrossRefGoogle Scholar
  27. 27.
    Ikonomovska, E., Gama, J., Sebastião, R., Gjorgjevik, D.: Regression Trees from Data Streams with Drift Detection. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS, vol. 5808, pp. 121–135. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Janikow, C.: Fuzzy decision trees: Issues and methods. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 28(1), 1–14 (1998)CrossRefGoogle Scholar
  29. 29.
    Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach. Springer-Verlag New York, Inc., Secaucus (2007)zbMATHGoogle Scholar
  30. 30.
    Kasabov, N., Leee, S.M.O.: Evolving fuzzy neural networks for supervised/unsupervised on-line knowledge-based learning. IEEE Transactions on Systems, Man and Cybernetics 31, 902–918 (2001)CrossRefGoogle Scholar
  31. 31.
    Kasabov, N., Song, Q.: DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Transactions on Fuzzy Systems 10(2), 144–154 (2002)CrossRefGoogle Scholar
  32. 32.
    Kim, E., Park, M., Kim, S., Park, M.: A Transformed Input-Domain Approach to Fuzzy Modeling. IEEE Transactions on Fuzzy Systems 6(4), 596–604 (1998)CrossRefGoogle Scholar
  33. 33.
    Kwok, T.Y., Yeung, D.Y.: Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks 8(3), 630–645 (1997)CrossRefGoogle Scholar
  34. 34.
    Leite, D., Costa Jr., P., Gomide, F.: Granular Approach for Evolving System Modeling. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 340–349. Springer, Heidelberg (2010), doi:10.1007/978-3-642-14049-5_35CrossRefGoogle Scholar
  35. 35.
    Lemos, A., Caminhas, W., Gomide, F.: Fuzzy Multivariable Gaussian Evolving Approach for Fault Detection and Diagnosis. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 360–369. Springer, Heidelberg (2010), doi:10.1007/978-3-642-14049-5_37CrossRefGoogle Scholar
  36. 36.
    Lemos, A., Caminhas, W., Gomide, F.: New uninorm-based neuron model and fuzzy neural networks. In: 2010 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 1–6 (2010), doi:10.1109/NAFIPS.2010.5548195Google Scholar
  37. 37.
    Lemos, A., Gomide, F., Caminhas, W.: Fuzzy evolving linear regression trees. Evolving Systems 2(1), 1–14 (2011), doi:10.1007/s12530-011-9028-zCrossRefGoogle Scholar
  38. 38.
    Lemos, A., Gomide, F., Caminhas, W.: Multivariable gaussian evolving fuzzy modeling system. IEEE Transactions on Fuzzy Systems 19(1), 91–104 (2011), doi:10.1109/TFUZZ.2010.2087381CrossRefGoogle Scholar
  39. 39.
    Lemos, A., Kreinovich, V., Caminhas, W., Gomide, F.: Universal approximation with uninorm-based fuzzy neural networks. In: 2011 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pp. 1–6 (2011)Google Scholar
  40. 40.
    Leng, G., McGinnity, T., Prasad, G.: An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets and Systems 150(2), 211–243 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Lima, E., Hell, M., Ballini, R., Gomide, F.: Evolving fuzzy modeling using participatory learning. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications. Wiley-Interscience/IEEE Press (2010)Google Scholar
  42. 42.
    Ljung, L.: System Identification. Prentice-Hall (1999)Google Scholar
  43. 43.
    Lughofer, E.: Extensions of vector quantization for incremental clustering. Pattern Recognition 41(3), 995–1011 (2008); Part Special issue: Feature Generation and Machine Learning for Robust Multimodal BiometricsGoogle Scholar
  44. 44.
    Lughofer, E.D.: FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi-Sugeno Fuzzy Models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008)CrossRefGoogle Scholar
  45. 45.
    Macias-Hernandez, J.J., Angelov, P., Zhou, X.: Soft sensor for predicting crude oil distillation side streams using takagi sugeno evolving fuzzy models. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 3305–3310 (2007)Google Scholar
  46. 46.
    Miller, R.G.: Simultaneous statistical inference. McGraw-Hill, Inc., New York (1966)zbMATHGoogle Scholar
  47. 47.
    de Oliveira, J.V., Pedrycz, W.: Advances in Fuzzy Clustering and its Applications. John Wiley & Sons, Inc., New York (2007)CrossRefGoogle Scholar
  48. 48.
    Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing. Wiley Interscience, NJ (2007)Google Scholar
  49. 49.
    Potts, D.: Incremental learning of linear model trees. In: ICML 2004: Proceedings of the Twenty-First International Conference on Machine Learning, p. 84. ACM, New York (2004), http://doi.acm.org/10.1145/1015330.1015372 CrossRefGoogle Scholar
  50. 50.
    Pouzols, F., Lendasse, A.: Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evolving Systems 1, 43–58 (2010), doi:10.1007/s12530-010-9005-yCrossRefGoogle Scholar
  51. 51.
    Quinlan, R.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, pp. 236–243 (1992)Google Scholar
  52. 52.
    Rahman, S., Hazim, O.: A Generalized Knowledge-Based Short-Term Load-Forecasting Technique. IEEE Transactions on Power Systems 8(2), 508–514 (1993)CrossRefGoogle Scholar
  53. 53.
    Rubio, J.d.J.: Sofmls: Online self-organizing fuzzy modified least-squares network. IEEE Transactions on Fuzzy Systems 17(6), 1296–1309 (2009), doi:10.1109/TFUZZ.2009.2029569MathSciNetCrossRefGoogle Scholar
  54. 54.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15(1), 116–132 (1985)zbMATHCrossRefGoogle Scholar
  55. 55.
    Torgo, L.: Functional models for regression tree leaves. In: ICML 1997: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 385–393. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  56. 56.
    Wang, W., Vrbanek, J.: An evolving fuzzy predictor for industrial applications. IEEE Transactions on Fuzzy Systems 16(6), 1439–1449 (2008)CrossRefGoogle Scholar
  57. 57.
    Williamson, J.R.: Gaussian ARTMAP: A neural network for past incremental learning of noisy multidimensional maps. Neural Networks 9(5), 881–897 (1996)CrossRefGoogle Scholar
  58. 58.
    Yager, R.: A Model of Participatory Learning. IEEE Transactions on Systems Man and Cybernetics 20(5), 1229–1234 (1990)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Young, P.: Recursive estimation and time-series analysis: an introduction. Springer-Verlag New York, Inc., New York (1984)zbMATHCrossRefGoogle Scholar
  60. 60.
    Yuan, Y., Shaw, M.: Induction of fuzzy decision trees. Fuzzy Sets and Systems 69(2), 125–139 (1995)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Zhou, X., Angelov, P.: Autonomous visual self-localization in completely unknown environment using evolving fuzzy rule-based classifier. In: IEEE Symposium on Computational Intelligence in Security and Defense Applications, CISDA 2007, pp. 131–138 (2007), doi:10.1109/CISDA.2007.368145Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departament of Eletronic EngineeringUniversidade Federal de Minas GeraisPampulhaBrazil
  2. 2.Department of Computer Engineering and AutomationUniversity of CampinasCampinasBrazil

Personalised recommendations