Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization

  • Abdulaziz Alkhalid
  • Igor Chikalov
  • Shahid Hussain
  • Mikhail Moshkov
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 13)

Abstract

The chapter is devoted to the consideration of two types of decision trees for a given decision table: α-decision trees (the parameter α controls the accuracy of tree) and decision trees (which allow arbitrary level of accuracy). We study possibilities of sequential optimization of α-decision trees relative to different cost functions such as depth, average depth, and number of nodes. For decision trees, we analyze relationships between depth and number of misclassifications. We also discuss results of computer experiments with some datasets from UCI ML Repository.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkhalid, A., Chikalov, I., Moshkov, M.: On Algorithm for Building of Optimal α-Decision Trees. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 438–445. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Alkhalid, A., Chikalov, I., Moshkov, M.: A Tool for Study of Optimal Decision Trees. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 353–360. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman and Hall, New York (1984)MATHGoogle Scholar
  4. 4.
    Chikalov, I.V., Moshkov, M.J., Zelentsova, M.S.: On Optimization of Decision Trees. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 18–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chikalov, I., Hussain, S., Moshkov, M.: Relationships Between Depth and Number of Misclassifications for Decision Trees. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 286–292. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2010), http://archive.ics.uci.edu/ml
  7. 7.
    Garey, M.R.: Optimal binary identification procedures. SIAM Journal on Applied Mathematics 23, 173–186 (1972)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2001)MATHGoogle Scholar
  9. 9.
    Martelli, A., Montanari, U.: Optimizing decision trees through heuristically guided search. Commun. ACM 21, 1025–1039 (1978)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Moshkov, M.J.: Time Complexity of Decision Trees. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 244–459. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Moshkov, M., Chikalov, I.: Consecutive optimization of decision trees concerning various complexity measures. Fundam. Inform. 61, 87–96 (2003)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Abdulaziz Alkhalid
    • 1
  • Igor Chikalov
    • 1
  • Shahid Hussain
    • 1
  • Mikhail Moshkov
    • 1
  1. 1.Mathematical and Computer Sciences and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations