Rough Set and Artificial Neural Network Approach to Computational Stylistics

Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 13)

Introduction

Computational stylistics or stylometry is a study on writing styles. Through linguistic analysis it yields observations on stylistic characteristics for authors, expressed in terms of quantifiable measures. These measures can be exploited for characterisation of writers, finding some similarities and differentiating features amongst their styles, for authorship attribution, and for recognition of documents based not on their topic, which is so common, but style. Stylistic analysis belongs with text mining, data mining, information retrieval, but also pattern recognition [4].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, A., Falcón, R., Bello, R. (eds.): Rough Set Theory: A True Landmark in Data Analysis. SCI, vol. 174. Springer, Berlin (2009)MATHGoogle Scholar
  2. 2.
    Ahonen, H., Heinonen, O., Klemettinen, M., Verkamo, A.: Applying data mining techniques in text analysis. Tech. Rep. C-1997-23, Department of Computer Science, University of Helsinki, Finland (1997)Google Scholar
  3. 3.
    Argamon, S., Burns, K., Dubnov, S. (eds.): The structure of style: Algorithmic approaches to understanding manner and meaning. Springer, Berlin (2010)Google Scholar
  4. 4.
    Argamon, S., Karlgren, J., Shanahan, J.: Stylistic analysis of text for information access. In: Proceedings of the 28th International ACM Conference on Research and Development in Information Retrieval, Brazil (2005)Google Scholar
  5. 5.
    Baayen, H., van Haltern, H., Tweedie, F.: Outside the cave of shadows: using syntactic annotation to enhance authorship attribution. Literary and Linguistic Computing 11(3), 121–132 (1996)CrossRefGoogle Scholar
  6. 6.
    Berber Sardinha, T.: Using key words in text analysis: practical aspects (1999), ftp://ftp.liv.ac.uk/pub/linguistics
  7. 7.
    Buckland, W.: Forensic semiotics. The Semiotics Review of Books 10(3) (1999)Google Scholar
  8. 8.
    Burrows, J.: Textual analysis. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford (2004)Google Scholar
  9. 9.
    Craig, H.: Stylistic analysis and authorship studies. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford (2004)Google Scholar
  10. 10.
    Dale, R., Somers, H., Moisl, H. (eds.): Handbook of natural language processing. CRC Press (2000)Google Scholar
  11. 11.
    Deuntsch, I., Gediga, G.: Rough set data analysis: A road to noninvasive knowledge discovery. Mathoδos Publishers, Bangor (2000)Google Scholar
  12. 12.
    Fiesler, E., Beale, R.: Handbook of neural computation. Oxford University Press (1997)Google Scholar
  13. 13.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough set theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-Based Rough Set Approach as a Proper Way of Handling Graduality in Rough Set Theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Greco, S., Słowiński, R., Stefanowski, J., Żurawski, M.: Incremental versus Non-Incremental Rule Induction for Multicriteria Classification. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 33–53. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Kavzoglu, T., Mather, P.: Assessing artificial neural network pruning algorithms. In: Proceedings of the 24th Annual Conference and Exhibition of the Remote Sensing Society, Greenwich, UK, pp. 603–609 (2011)Google Scholar
  17. 17.
    Khmelev, D., Tweedie, F.: Using Markov chains for identification of writers. Literary and Linguistic Computing 16(4), 299–307 (2001)CrossRefGoogle Scholar
  18. 18.
    Kingston, G., Maier, H., Lambert, M.: A statistical input pruning method for artificial neural networks used in environmental modelling. In: Transactions of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society, Osnabrueck, Germany, pp. 87–92 (2004)Google Scholar
  19. 19.
    Koppel, M., Argamon, S., Shimoni, A.: Automatically categorizing written texts by author gender. Literary and Linguistic Computing 17(4), 401–412 (2002)CrossRefGoogle Scholar
  20. 20.
    Lynam, T., Clarke, C., Cormack, G.: Information extraction with term frequencies. In: Proceedings of the Human Language Technology Conference, San Diego, USA, pp. 1–4 (2001)Google Scholar
  21. 21.
    Moshkov, M.J., Piliszczuk, M., Zielosko, B.: On Partial Covers, Reducts and Decision Rules with Weights. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 211–246. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Moshkov, M.J., Skowron, A., Suraj, Z.: On Covering Attribute Sets by Reducts. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 175–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Munro, R.: A queing-theory model of word frequency distributions. In: Proceedings of the 1st Australasian Language Technology Workshop, Melbourne, Australia, pp. 1–8 (2003)Google Scholar
  24. 24.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Pawlak, Z.: Computing, artificial intelligence and information technology: Rough sets, decision algorithms and Bayes’ theorem. European Journal of Operational Research 136, 181–189 (2002)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Pawlak, Z.: Rough sets and intelligent data analysis. Information Sciences 147, 1–12 (2002)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Peng, R.: Statistical aspects of literary style. Bachelor’s Thesis, Yale University (1999)Google Scholar
  28. 28.
    Peng, R., Hengartner, H.: Quantitative analysis of literary styles. The American Statistician 56(3), 15–38 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shen, Q.: Rough Feature Selection for Intelligent Classifiers. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 244–255. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-Based Rough Set Approach to Reasoning About Ordinal Data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Stanczyk, U.: Dominance-Based Rough Set Approach Employed in Search of Authorial Invariants. In: Kurzynski, M., Wozniak, M. (eds.) Computer Recognition Systems 3. AISC, vol. 57, pp. 293–301. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Stańczyk, U.: Relative Reduct-Based Selection of Features for ANN Classifier. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 335–344. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Stańczyk, U.: DRSA Decision Algorithm Analysis in Stylometric Processing of Literary Texts. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS(LNAI), vol. 6086, pp. 600–609. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Stańczyk, U.: Rough Set-Based Analysis of Characteristic Features for ANN Classifier. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010. LNCS(LNAI), vol. 6076, pp. 565–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Stefanowski, J.: On Combined Classifiers, Rule Induction and Rough Sets. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 329–350. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Waugh, S., Adams, A., Tweedie, F.: Computational stylistics using artificial neural networks. Literary and Linguistic Computing 15(2), 187–198 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations