Advertisement

Introduction to Perception Based Computing

Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 13)

Abstract

We present a general scheme of interaction and we discuss the role of interactions in modeling of perception processes. We also discuss the role of information systems in interactive computing used to build perception modeling. In particular, we illustrate use of information systems for representation of actions or plans, their (changing in time) pre and post conditions. These information systems create a starting point for perception modeling, i.e., modeling of the process of understanding of sensory measurements.

Keywords

interactive computing interactive information systems interactive tables rough sets granular computing wisdom technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbasian, H., Drummond, C., Japkowicz, N., Matwin, S.: Robustness of Classifiers to Changing Environments. In: Farzindar, A., Kešelj, V. (eds.) Canadian AI 2010. LNCS, vol. 6085, pp. 232–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Arbib, M.A.: The Metaphorical Brain 2: Neural Networks and Beyond. Willey & Sons (1989)Google Scholar
  3. 3.
    Bara, B.G.: Cognitive Science. A Developmental Approach to the Simulation of the Mind. Lawrence Erlbaum Associates, Hove (1995)Google Scholar
  4. 4.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers (2002)Google Scholar
  5. 5.
    Barr, B.: *-Autonomous categories. Lecture Notes in Mathematics, vol. 752. Springer (1979)Google Scholar
  6. 6.
    Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Cambridge University Press (1997)Google Scholar
  7. 7.
    Bazan, J.G.: Hierarchical Classifiers for Complex Spatio-Temporal Concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Bazan, J.G., Skowron, A.: On-Line Elimination of Non-Relevant Parts of Complex Objects in Behavioral Pattern Identification. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 720–725. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Blass, A., Gurevich, Y.: Abstract State Machines Capture Parallel Algorithms. ACM Transactions on Computational Logic 4(4), 578–651 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press (2001)Google Scholar
  11. 11.
  12. 12.
    De Raedt, L.: Logical and Relational Learning (2008)Google Scholar
  13. 13.
    Gibson, J.J.: The perception of the visual world. Houghton Mifflin (1950)Google Scholar
  14. 14.
    Gibson, J.J.: The ecological approach to visual perception. Lawrence Earlbaum Assoc. Publishers (1979)Google Scholar
  15. 15.
    Goldstein, E.B. (ed.): Blackwell Handbook of Perception. Blackwell Publishers Ltd. (2001)Google Scholar
  16. 16.
    Goldin, D.Q., Smolka, S.A., Attie, P.C., Sonderegger, E.L.: Turing Machines, Transition Systems, and Interaction. Information and Computation 194(2), 101–128 (2004)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Goldin, D., Smolka, S., Wegner, P.: Interactive Computation: The New Paradigm. Springer, Heidelberg (2010)Google Scholar
  18. 18.
    Goldin, D.Q., Wegner, P.: Principles of interactive computation. In: Goldin, D., Smolka, S., Wegner, P. (eds.) Interactive Computation: The New Paradigm, pp. 25–37. Springer (2006)Google Scholar
  19. 19.
    Gurevich, Y.: Evolving Algebra 1993: Lipari Guide. In: Bögger, E. (ed.) Specification and Validation Methods, pp. 9–36. Oxford University Press (1995)Google Scholar
  20. 20.
    Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms. ACM Trans. on Computational Logic 1(1), 77–111 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gurevich, Y.: Interactive Algorithms 2005. In: Goldin, D., Smolka, S., Wegner, P. (eds.) Interactive Computation: The New Paradigm, pp. 165–181. Springer (2006)Google Scholar
  22. 22.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer (2008)Google Scholar
  23. 23.
    Jankowski, A., Skowron, A.: A wistech paradigm for intelligent systems. In: Peters et.al, [54], pp. 94–132Google Scholar
  24. 24.
    Jankowski, A., Skowron, A.: Logic for artificial intelligence: The Rasiowa - Pawlak school perspective. In: Ehrenfeucht, A., Marek, V., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 106–143. IOS Press, Amsterdam (2008)Google Scholar
  25. 25.
    Jankowski, A., Skowron, A.: Wisdom Technology: A Rough-Granular Approach. In: Marciniak, M., Mykowiecka, A. (eds.) Bolc Festschrift. LNCS, vol. 5070, pp. 3–41. Springer, Heidelberg (2009)Google Scholar
  26. 26.
    Keefe, R.: Theories of Vagueness. Cambridge Studies in Philosophy (2000)Google Scholar
  27. 27.
    Kleijn, J., Koutny, M.: A Petri net model for membrane systems with dynamic structure. Natural Computing 8, 781–796 (2009)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Liu, J.: Autonomous Agents and Multi-Agent Systems: Explorations in Learning, self-Organization and Adaptive Computation. World Scientific Publishing (2001)Google Scholar
  29. 29.
    Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspective. Springer (1998)Google Scholar
  30. 30.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman (1982)Google Scholar
  31. 31.
    Michalski, R.S.: Pattern recognition as knowledge-guided computer induction. Technical Report No. 927. Department of Computer Science. University of Illinois, Urbana-Champaign (1978)Google Scholar
  32. 32.
    Milner, R.: Elements of interaction. Communications of ACM 36, 78–89 (1993)CrossRefGoogle Scholar
  33. 33.
    Newell, A.: Unified theories of cognition. Harvard University Press (1990)Google Scholar
  34. 34.
    Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered Learning for Concept Synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Nguyen, T.T., Skowron, A.: Rough-granular computing in human-centric infor-mation processing. In: Bargiela, A., Pedrycz, W. (eds.) Human-Centric Information Processing Through Granular Modelling. SCI, vol. 182, pp. 1–30. Springer (2009)Google Scholar
  36. 36.
    Noë, A.: Action in Perception. MIT Press (2004)Google Scholar
  37. 37.
    Omicini, A., Ricci, A., Viroli, M.: The Multidisciplinary Patterns of Interaction from Sciences to Computer Science. In: Goldin, D., Smolka, S., Wegner, P. (eds.) Interactive Computation: The New Paradigme, pp. 359–414. Springer, Heidelberg (2010)Google Scholar
  38. 38.
    Păun, G.: Membrane Computing. An Introduction. Springer (2002)Google Scholar
  39. 39.
    Pawlak, Z.: Information Systems – theoretical foundation. Information Systems 6, 205–218 (1981)MATHCrossRefGoogle Scholar
  40. 40.
    Pawlak, Z.: Rough sets. International Journal of Computing and Information Sciences 18, 341–356 (1982)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Pawlak, Z.: Rough sets. Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers (1991)Google Scholar
  42. 42.
    Pawlak, Z.: Concurrent versus sequential the rough sets perspective. Bulletin of the EATCS 48, 178–190 (1992)MATHGoogle Scholar
  43. 43.
    Pawlak, Z.: Elementary rough set granules: toward a rough set processor. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 5–13. Springer (2003)Google Scholar
  44. 44.
    Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  45. 45.
    Pawlak, Z., Skowron, A.: A rough set approach for decision rules generation. In: Thirteenth International Joint Conference on Artificial Intelligence IJCAI 1993, pp. 114–119. Morgan Kaufmann (1993)Google Scholar
  46. 46.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Science 177, 3–27 (2007)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Science 177, 28–40 (2007)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Information Science 177, 41–73 (2007)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons (2008)Google Scholar
  50. 50.
    Peters, J.F., Henry, C.D., Ramanna, S.: Reinforcement learning in swarms that learn. In: Barthes, J.-P., Jain, L., Skowron, A., Sun, R., Morizet-Mahoudeaux, P., Liu, J., Zhong, N. (eds.) Proceedings of the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Compiegne, France, September 19-22, pp. 400–406. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  51. 51.
    Peters, J.F., Henry, C.D., Ramanna, S.: Reinforcement learning with pattern-based rewards. In: Hamza, M.H. (ed.) Computational Intelligence, Proceedings of the Fourth International IASTED Conference on Computational Intelligence, July 4-6, pp. 267–272. IASTED/ACTA Press, Calgary (2005)Google Scholar
  52. 52.
    Peters, J.F., Lockery, D., Ramanna, S.: Monte-Carlo off-policy reinforcement learning: A rough set approach. In: Nedjah, N., de Mourelle, M.L., Abraham, A., Köppen, M. (eds.) 5th International Conference on Hybrid Intelligent Systems (HIS 2005), Rio de Janeiro, Brazil, November 6-9, pp. 187–192 (2005)Google Scholar
  53. 53.
    Peters, J.F., Henry, C., Ramanna, S.: Rough ethograms: A study of intelligent system behavior. In: Kłopotek, M.A., Wierzchoń, S., Trojanowski, K. (eds.) Intelligent Information Systems. AISC, vol. 31, pp. 117–126. Springer, Heidelberg (2005)Google Scholar
  54. 54.
    Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.): Transactions on Rough Sets VI. LNCS, vol. 4374. Springer, Heidelberg (2007)Google Scholar
  55. 55.
    Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50(5), 537–544 (2003)MathSciNetMATHGoogle Scholar
  56. 56.
    Polkowski, L., Skowron, A., Żytkow, J.: Rough foundations for rough sets. In: Proceedings of The Third International Workshop on Rough Sets and Soft Computing (RSSC 1994), November 10-12, pp. 142–149. San Jose State University, CA (1994); see also: Rough foundations for rough sets. In: Lin, T.Y., Wildberger, A.M. (eds.): Soft Computing, Simulation Councils, Inc., San Diego, pp. 55–58 (1995)Google Scholar
  57. 57.
    Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15, 333–365 (1997)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Read, S.: Thinking about logic: An introduction to the philosophy of logic. Oxford University Press (1995)Google Scholar
  59. 59.
    Ray, D.: A Game-Theoretic Perspective on Coalition Formation. Oxford University Press (2007)Google Scholar
  60. 60.
    Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artificial Intelligence 101, 165–200 (1998)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Simons, H.: The Science of the Artificial, 2nd edn. MIT Press (1982)Google Scholar
  62. 62.
    Skowron, A.: Rough sets and vague concepts. Fundamenta Informaticae 64(1-4), 417–431 (2005)MathSciNetMATHGoogle Scholar
  63. 63.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MathSciNetMATHGoogle Scholar
  64. 64.
    Skowron, A., Stepaniuk, J.: Informational granules and rough-neural computing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 43–84. Springer (2003)Google Scholar
  65. 65.
    Skowron, A., Stepaniuk, J.: Hierarchical modelling in searching for complex patterns: constrained sums of information systems. Journal of Experimentaland Theoretical Artificial Intelligence 17(1-2), 83–102 (2005)MATHCrossRefGoogle Scholar
  66. 66.
    Skowron, A., Stepaniuk, J.: Approximation Spaces in Rough Granular Computing. Fundamenta Informaticae 100, 141–157 (2010)MathSciNetMATHGoogle Scholar
  67. 67.
    Skowron, A., Stepaniuk, J.: Rough Granular Computing Based on Approximation Spaces (submitted) Google Scholar
  68. 68.
    Skowron, A., Suraj, Z.: Rough sets and concurrency. Bulletin of the Polish Academy of Sciences 41, 237–254 (1993)MATHGoogle Scholar
  69. 69.
    Skowron, A., Suraj, Z.: Discovery of concurrent data models from experimental tables: A rough set approach. In: Proceedings of First International Conference on Knowledge Discovery and Data Mining, pp. 288–293. AAAI Press (1995)Google Scholar
  70. 70.
    Skowron, A., Szczuka, M.: Toward interactive computations: A rough-granular approach. In: Koronacki, J., Wierzchon, S., Ras, Z., Kacprzyk, J. (eds.) Commemorative Volume to Honor Ryszard Michalski, pp. 1–20. Springer (2009)Google Scholar
  71. 71.
    Skowron, A., Wang, H., Wojna, A., Bazan, J.G.: A Hierarchical Approach to Multimodal Classification. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 119–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  72. 72.
    Skowron, A., Wasilewski, P.: Information Systems in Modeling Interactive Computations on Granules. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 730–739. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  73. 73.
    Skowron, A., Wasilewski, P.: An Introduction to Perception Based Computing. In: Kim, T.-H., Lee, Y.-H., Kang, B.-H., Ślęzak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 12–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  74. 74.
    Skowron, A., Wasilewski, P.: Information systems in interactive computing. In: Wakulicz-Deja, A. (ed.) Proceedings of Desision System Support Conference, Instituite of Informatics, Zakopane, December 1–4, pp. 33–45. Silesian University (2010)Google Scholar
  75. 75.
    Skowron, A., Wasilewski, P.: Information systems in modeling interactive computations on granules. Theoretical Computer Science 412(42), 5939–5959 (2011)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Skowron, A., Wasilewski, P.: Toward interactive rough–granular computing. Control & Cybernetics 40(2), 1–23 (2011)Google Scholar
  77. 77.
    Skowron, A., Stepaniuk, J., Peters, J.F.: Towards discovery of relevant patterns from parametrized schemes of information granule construction. In: Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.) Rough Set Theory and Granular Computing, pp. 97–108. Springer (2003)Google Scholar
  78. 78.
    Skowron, A., Stepaniuk, J., Peters, J., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)MathSciNetMATHGoogle Scholar
  79. 79.
    Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft Computing, vol. 4, pp. 17–33. Duke University Press, Duke (1997)Google Scholar
  80. 80.
    Stepaniuk, J.: Rough-Granular Computing in Knowledge Discovery and Data Mining. Springer (2008)Google Scholar
  81. 81.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press (1998)Google Scholar
  82. 82.
    Sycara, K., Norman, T.J., Giampapa, J.A., Kollingbaum, M., Burnett, C., Masato, D., McCallum, M., Strub, M.H.: Agent Support for Policy-driven Collaborative Mission Planning. The Computer Journal 53, 528–540 (2010)CrossRefGoogle Scholar
  83. 83.
    Ślęzak, D., Toppin, G.: Injecting domain knowledge into a granular database engine – A position paper. In: CIKM 2010 (2010)Google Scholar
  84. 84.
    Ślęzak, D., Wasilewski, P.: Granular Sets Foundations and Case Study of Tolerance Spaces. In: ICSR 2006. LNCS (LNAI), vol. 4039, pp. 461–469. Springer, Heidelberg (2007)Google Scholar
  85. 85.
    Thagard, P.: Mind: Introduction to Cognitive Science, 2nd edn. MIT Press (2005)Google Scholar
  86. 86.
    Turing, A.: Computing machinery and intelligence. Mind 59, 33–60 (1950)MathSciNetGoogle Scholar
  87. 87.
    Vapnik, V.: Statisctical Learning Theory. John Wiley & Sons (1998)Google Scholar
  88. 88.
    Vapnik, V.: Learning Has Just Started an interview with Prof. Vladimir Vapnik by R. Gilad- Bachrach (2008), http://learningtheory.org
  89. 89.
    Wang, H., Lewis, M., Chien, S., Scerri, P., Velagapudi, P., Sycara, K., Kane, B.: Teams organization and performance in multi-human/multi-robot teams. In: 2010 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1617–1623 (2010)Google Scholar
  90. 90.
    Wang, Y., Kinsner, W., Zhang, D.: Contemporary Cybernetics and its Faces of Cognitive Informatics and Computational Intelligence. IEEE Trans. on System, Man, and Cybernetics (B) 39(4), 1–11 (2009)Google Scholar
  91. 91.
    Wasilewski, P., Ślęzak, D.: Foundations of Rough Sets from Vagueness Perspective. In: Hassanien, A.E., Suraj, Z., Ślęzak, D., Lingras, D.P. (eds.) Rough Computing. Theories, Technologies and Applications. Information Science Refer., pp. 1–37 (2008)Google Scholar
  92. 92.
    Wegner, P.: Why interactions is more powerful than algorithms. Communications of ACM 40, 81–91 (1997)CrossRefGoogle Scholar
  93. 93.
    Wegner, P.: Interactive foundation of computing. Theoretical Computer Science 192, 315–351 (1998)MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland Publishing Co. (1979)Google Scholar
  95. 95.
    Zadeh, L.A.: From computing with numbers to computing with words – from manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems 45, 105–119 (1999)MathSciNetGoogle Scholar
  96. 96.
    Zadeh, L.A.: A new direction in AI-toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland

Personalised recommendations