Advertisement

Estimation of Parameters

  • Josef Honerkamp
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

In Chap. 2 we introduced random variables, their corresponding densities, and quantities characterizing these densities. We have also seen how to compute with random variables. Up to now, we have avoided a discussion about the interpretation of the probability density. Of course, what we always had in mind is the so-called relative frequency interpretation of the probability density: One assumes that many realizations of the random variable exist. Then a histogram where the relative frequencies of the measured values in so-called bins, i.e., small intervals, are plotted against the intervals themselves, should converge with increasing number of realizations to the probability density.

Keywords

Unbiased Estimator Confidence Region Belief Function Monte Carlo Integration Normal Random Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abragam, A., Proctor, W.: Experiments on Spin Temperature, Phys. Rev. 106, 160 (1957)Google Scholar
  2. Abragam, A., Proctor, W.: Spin Temperature, Phys. Rev. 109, 1441 (1958)Google Scholar
  3. Ahlers, G.: Thermodynamics and experimental tests of static scaling and universality near the superfluid transition in He4 under pressure. Phys. Rev. A 8(1), 530–568 (1973)Google Scholar
  4. Anderson, M., Ensher, J., Matthews, M., Wieman, C., Cornell, E.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)Google Scholar
  5. Ashcroft, N.W., Mermin, N.: Solid State Physics. Holt–Saunders, Fort Worth (1976)Google Scholar
  6. Baccala, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474 (2001)Google Scholar
  7. Baehr, H.: Thermodynamik, 9th edn. Springer, Berlin/Heidelberg (1996)Google Scholar
  8. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, New York (1975)Google Scholar
  9. Barker, J., Henderson, D.: What is a liquid? Understanding the states of matter. Rev. Mod. Phys. 48, 487 (1976)Google Scholar
  10. Baxter, R.: Exactly Soluble Models in Statistical Mechanics. Academic, New York (1984)Google Scholar
  11. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (1978)Google Scholar
  12. Berne, B., Pecora, R.: Dynamic Light Scattering. Wiley, New York (1976)Google Scholar
  13. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B 36, 192–236 (1974)Google Scholar
  14. Binder, K.: Theory and technical aspects of Monte Carlo simulation. In: Binder, K. (ed.) Monte Carlo Methods in Statistical Physics. Springer, Berlin/Heidelberg (1979)Google Scholar
  15. Binder, K.: Applications of the Monte-Carlo Method in Statistical Physics. Springer, Berlin/Heidelberg (1987)Google Scholar
  16. Binder, K.: The Monte Carlo Method in Condensed Matter Physics. Springer, Berlin/Heidelberg (1995)Google Scholar
  17. Binder, K., Heermann, D.: Monte Carlo Simulation in Statistical Physics. Springer, Berlin/ Heidelberg (1997)Google Scholar
  18. Bloomfield, P.: Fourier Analysis of Time Series: An Introduction. Wiley, New York (1976)Google Scholar
  19. Brenig, W.: Statistische Theorie der Wärme. Springer, Berlin/Heidelberg (1992)Google Scholar
  20. Breuer, H.-P., Petruccione, F.: Stochastic dynamics of quantum jumps. Phys. Rev. E 52(1), 428–441 (1995)Google Scholar
  21. Breuer, H., Huber, W., Petruccione, F.: The macroscopic limit in a Stochastic Reaction–Diffusion process. Europhys. Lett. 30(2), 69–74 (1995)Google Scholar
  22. Brockwell, P.J., Davies, R.A.: Time Series: Theory and Methods. Springer, New York (1987)Google Scholar
  23. Collins, G.: Gaseous BoseEinstein Condensate Finally Observed, Phys. Today 48, 17-20 (1995)Google Scholar
  24. Dahlhaus, R.: Graphical interaction models for multivariate time series. Metrika 51, 157–172 (2000)Google Scholar
  25. Davis, P., Rabinowitz, P.: Methods of Numerical Integration. Academic, New York (1975)Google Scholar
  26. Dawydow, A.S.: Quantum Mechanics. Pergamon Press, Oxford (1965)Google Scholar
  27. Delves, L., Mohamed, J.: Computational Methods for Integral Equations. Cambridge University Press, Cambridge (1985)Google Scholar
  28. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM-Algorithm. J. R. Stat. Soc. B 39, 1 (1977)Google Scholar
  29. Diu, B., Guthmann, C., Lederer, D., Roulet, B.: Grundlagen der Statistischen Physik. de Gruyter, Berlin (1994)Google Scholar
  30. Domb, C., Green, M.: Phase Transitions and Critical Phenomena, vol. 3. Academic, New York (1974)Google Scholar
  31. Dudley, R.: Real Analysis and Probability. Wadsworth and Brooks/Cole, Pacific Grove (1989)Google Scholar
  32. Efron, B., Tibshirani, R.: An Introduction to Bootstrap. Chapman & Hall, New York (1993)Google Scholar
  33. Eichenauer, J., Grothe, H., Lehn, J.: Marsaglia’s lattice test and non-linear congruential pseudo random number generators. Metrika 35, 241 (1988)Google Scholar
  34. Eichler, M.: Graphical modeling of dynamic relationships in multivariate time series. In: Schelter, B., Winterhalder, M., Timmer, J. (eds.) Handbook of Time Series Analysis. Wiley, New York (2006)Google Scholar
  35. Ellis, R.S.: Entropy, Large Deviations, and Statistcal Mechanics. Springer, Berlin/Heidelberg (1985)Google Scholar
  36. Feller, W.: An Introduction to Probability Theory, vol. 2. Wiley, New York (1957)Google Scholar
  37. Fitzgerald, W.J., Ó Ruanaidh, J.J.K.: Numerical Bayesian Methods Applied to Signal Processing. Springer, New York/Berlin/Heidelberg (1996)Google Scholar
  38. Frodesen, A.G., Skjeggestad, O., Tofte, H.: Probability and Statistics in Particle Physics. Universitätsforlaget, Bergen/Oslo/Tromso (1979)Google Scholar
  39. Gardiner, C.: Handbook of Stochastic Methods. Springer, Berlin/Heidelberg (1985)Google Scholar
  40. Gelb, A. (ed.): Applied Optimal Estimation. MIT-Press, Cambridge (1974)Google Scholar
  41. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)Google Scholar
  42. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison, Reading (1994)Google Scholar
  43. Granger, C.J.W.: Investigating causal relations by econometric models and cross-spectral methods. Econometrics 37, 424–438 (1969)Google Scholar
  44. Griffin, A., Snoke, D., Stringari, S. (eds.): Bose–Einstein Condensation. Cambridge University Press, Cambridge (1995)Google Scholar
  45. Groetsch, C.W.: The Theory of Tikhonovs Regularisation for Fredholm Equations of the First Kind. Pitman, Boston (1984)Google Scholar
  46. Hammersley, J.M., Clifford, P.: Markov Field on Finite Graphs and Lattices. unpublished (1971)Google Scholar
  47. Hartung, J., Elpelt, B., Klösener, K.: Statistik. Oldenbourg, Munich/Vienna (1986)Google Scholar
  48. Heller, P.: Experimental investigations of critical phenomena, Rep. Progr. Phys. 30(II), 731 (1967)Google Scholar
  49. Hengartner, W., Theodorescu, R.: Einführung in die Monte-Carlo Methode. Carl Hanser, Munich/ Vienna (1978)Google Scholar
  50. Herring, C.: Direct exchange. In: Rado, G., Suhl, H. (eds.) Magnetism, vol. 2B. Academic, New York (1966)Google Scholar
  51. Hirschfelder, J., Curtiss, C., Bird, R.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)Google Scholar
  52. Ho, J., Litster, J.: Magnetic equation of state of CrBr3 near the critical point. Phys. Rev. Lett. 22(12), 603–606 (1969)Google Scholar
  53. Honerkamp, J.: Stochastic Dynamical Systems. VCH, Weinheim (1994)Google Scholar
  54. Honerkamp, J., Römer, H.: Theoretical Physics: A Classical Approach. Springer, Berlin/ Heidelberg (1993)Google Scholar
  55. Honerkamp, J., Weese, J.: Determination of the Relaxation Spectrum by a Regularization Method. Macromolecules 22, 4372–4377 (1989)Google Scholar
  56. Honerkamp, J., Weese, J.: Tikhonovs regularization method for Ill-posed problems: a comparision of different methods. Contin. Mech. Thermodyn. 2, 17–30 (1990)Google Scholar
  57. Honerkamp, J., Weese, J.: A nonlinear regularization method for the calculation of the relaxation spectrum. Rheol. Acta 32, 32–65 (1993)Google Scholar
  58. Honerkamp, J., Maier, D., Weese, J.: A nonlinear regularization method for the analysis of photon correlation spectroscopy data. J. Chem. Phys. 98(2), 865–872 (1993)Google Scholar
  59. Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)Google Scholar
  60. Ising, E.: Beitrag zur theorie des ferromagnetismus. Z. Phys. 31, 253–258 (1925)Google Scholar
  61. Jachan, M., Henschel, K., Nawrath, J., Schad, A., Timmer, J., Schelter, B.: Inferring direct directed-information flow from multivariate nonlinear time series. Phys. Rev. E 80, 011138 (2009)Google Scholar
  62. Jaynes, E.: Papers on Probability, Statistics and Statistical Physics. Reidel, Dordrecht (1982)Google Scholar
  63. Jiu-li, L., Van den Broeck, C., Nicolis, G.: Stability criteria and fluctuations around nonequilibrium states. Z. Phys. B Condens. Matter 56, 165–170 (1984)Google Scholar
  64. Julier, S., Uhlmann, J.: A general method for approximating nonlinear transformations of probability distributions. Technical Report, Department of Engineering Science, University of Oxford (1996)Google Scholar
  65. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new approach for filtering nonlinear systems. In: Proceedings of the American Control Conference, Seattle, vol. 3, pp. 1628–1632 (1995)Google Scholar
  66. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45, 477–482 (2000)Google Scholar
  67. Kadanoff, L.: Scaling Laws for Ising Models Near Tc, Physics 2, 263 (1966)Google Scholar
  68. Kitagawa, G., Gersch, W.: Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics, vol. 116. Springer, New York (1996)Google Scholar
  69. Kittel, C.: Thermal Physics. Freeman, San Francisco (1980)Google Scholar
  70. Klein, M.J.: Phys. Rev. 104, 589 (1956)Google Scholar
  71. Klitzing, K.V., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)Google Scholar
  72. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin/Heidelberg (1995)Google Scholar
  73. Knuth, D.E.: Seminumerical Algorithms, vol. 2: The Art of Computer Programming. Addison, Reading (1969)Google Scholar
  74. Kolmogoroff, A. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin/Heidelberg (1933)Google Scholar
  75. Kose, V., Melchert, F.: Quantenmaße in der Elektrischen Meßtechnik. VCH, Weinheim (1991)Google Scholar
  76. Kouvel, J., Comly, J.: Magnetic equation of state for nickel near its curie point. Phys. Rev. Lett. 20(22), 1237–1239 (1968)Google Scholar
  77. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)Google Scholar
  78. Landau, L.D., Lifschitz, E.M.: Theory of Elasticity. Pergamon, London (1959)Google Scholar
  79. Lehmann, E.: Theory of Point Estimation. Wadsworth & Brooks/Cole, New York (1991)Google Scholar
  80. Lehmer, D.H.: Mathematical methods in large-scale computing units. In: Nr. 141. Proceedings of the 2nd Symposium on Large-Scale Digital Calculating Machinery. Harvard University Press, Cambridge (1951)Google Scholar
  81. Levine, R.D., Tribus, M. (eds.): The Maximum Entropy Formalism. MIT Press, Cambridge (1979)Google Scholar
  82. Lien, W.H., Phillips, N.E.: Low-temperature heat capacities of potassium, rubidium and cesium. Phys. Rev. A 133(5A), 1370 (1964)Google Scholar
  83. Lütkepohl, H., Krätzig, M.: Applied Time Series Econometrics. Cambridge University Press, Cambridge (2004)Google Scholar
  84. Malek Mansour, M., Van den Broeck, C., Nicolis, G., Turner, J.: Asymptotic properties of Markovian master equations. Ann. Phys. 131, 283–313 (1981)Google Scholar
  85. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)Google Scholar
  86. Mandl, F.: Statistical Physics. Wiley, New York (1971)Google Scholar
  87. Mayer, J.E.: The Statistical Mechanics of Condensing Systems. I, J. Chem. Phys. 5, 67 (1937)Google Scholar
  88. McCoy, B., Wu, T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge (1973)Google Scholar
  89. McQuarrie, D.A.: Statistical Mechanics. Harper & Row, New York (1976)Google Scholar
  90. McQuarrie, D.A.: Quantum Chemistry. Oxford University Press, Oxford (1983)Google Scholar
  91. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)Google Scholar
  92. Michels, A., Blaisse, B., Michels, C.: Proc. R. Soc. A 160, 358 (1937)Google Scholar
  93. Miller, G.F.: In: Delves, L.M., Walsh, J. (eds.) Numerical Solution of Integral Equations. Clarendon, Oxford (1974)Google Scholar
  94. Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M.: Wavelet Toolbox, for Use with MatLab. The MathWorks, Natick (1996)Google Scholar
  95. Montroll, E.: Some remarks on the integral equations of statistical mechanics In: Cohen, E. (ed.) Fundamental Problems in Statistical Mechanics, p. 230. North-Holland, Amsterdam (1962)Google Scholar
  96. Montroll, E., West, B.: On an enriched collection of Stochastic processes. In: Montroll, E., Lebowitz, J. (eds.) Fluctuation Phenomena, Chap. 2, p. 62–206. North-Holland, Amsterdam (1987)Google Scholar
  97. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)Google Scholar
  98. Nicolis, G., Prigogine, I.: Self-Organization in Non-equilibrium Systems. Wiley, New York (1977)Google Scholar
  99. Niederreiter, H.: Recent trends in random number and random vector generation. Ann. Oper. Res., Proc. 5th Int. Conf. Stoch. Programm. Ann. Arbor. 35, 241 (1989)Google Scholar
  100. Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307 (2004)Google Scholar
  101. Oppenheimer, A., Schafer, R.: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs (1989)Google Scholar
  102. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (1984)Google Scholar
  103. Penzias, A.A.,Wilson, R.: A Measurement of Excess Antenna Temperature at 4080 mc/s., Astrophys. J. 142, 419-421 (1965)Google Scholar
  104. Prange, R., Girvin, S. (eds.): The Quantum Hall Effect. Springer, Berlin/Heidelberg (1987)Google Scholar
  105. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes. Cambridge University Press, Cambridge (2007)Google Scholar
  106. Priestley, M.: Spectral Analysis and Time Series. Academic, New York (1981)Google Scholar
  107. Prigogine, I., Resibois, P.: On the kinetics of the approach to equilibrium, Physica 27(629) (1961)Google Scholar
  108. Purcell, E., Pound, R.: A Nuclear Spin System at Negative Temperature,, Phys. Rev. 81, 279 (1951)Google Scholar
  109. Rabiner, L., Gold, B.: Theory and Application of Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1975)Google Scholar
  110. Rahman, A: Correlations in the Motion of Atoms in Liquid Argon,.: Phys. Rev. A 136, A405 (1964)Google Scholar
  111. Ramsey, N.: Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures, Phys. Rev. 103, 20 (1956)Google Scholar
  112. Ree, F.H., Hoover, W.G.: Fifth and Sixth Virial Coefficients for Hard Spheres and Hard Disks, J. Chem. Phys. 40, 939 (1964)Google Scholar
  113. Reichl, L.E.: A Modern Course in Statistical Physics. Arnold, London (1980)Google Scholar
  114. Römer, H., Filk, T.: Statistische Mechanik. VCH, Weinheim (1994)Google Scholar
  115. Roths, T., Maier, D., Friedrich, C., Marth, M., Honerkamp, J.: Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regularization method. Rheol. Acta 39, 163–173 (2000)Google Scholar
  116. Rubinstein, R.Y.: Simulation and the Monte-Carlo Method. Wiley, New York (1981)Google Scholar
  117. Samorodnitzky, G., Taqqu, M.: Stable Non-Gaussian Random Processes. Chapman & Hall, New York/London (1994)Google Scholar
  118. Saupe, D.: Algorithms for random fractals. In: Peitgen, H., Saupe, D. (eds.) The Science of Fractal Images. Springer, Berlin/Heidelberg (1988)Google Scholar
  119. Schelter, B., Winterhalder, M., Eichler, M., Peifer, M., Hellwig, B., Guschlbauer, B., Lücking, C.H., Dahlhaus, R., Timmer, J.: Testing for directed influences among neural signals using partial directed coherence. J. Neurosci. Method 152, 210–219 (2006a)Google Scholar
  120. Schelter, B., Winterhalder, M., Timmer, J. (eds.): Handbook of Time Series Analysis. Wiley-VCH, Berlin (2006b)Google Scholar
  121. Schlittgen, R., Streitberg, H.: Zeitreihenanalyse. R. Oldenbourg, Munich (1987)Google Scholar
  122. Schneider, I. (ed.): Die Entwicklung der Wahrscheinlichkeitsrechnung von den Anfängen bis 1933. Wissenschaftliche Buchgesellschaft, Darmstadt (1986)Google Scholar
  123. Shannon, C.: A Mathematical Theory of Communication. Bell Syst. Technol. J. 27, 379–423 (1948)Google Scholar
  124. Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis. Chapman & Hall, New York/London (1995)Google Scholar
  125. Sommerlade, L., Thiel, M., Platt, B., Plano, A., Riedel, G., Grebogi, C., Timmer, J., Schelter, B. Inference of Granger causal time-dependent influences in noisy multivariate time series. J. Neurosci. Method 203, 173–185 (2012)Google Scholar
  126. Stanley, H.E.: Phase Transition and Critical Phenomena. Clarendon Press, Oxford (1971)Google Scholar
  127. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1996)Google Scholar
  128. Straumann, N.: Thermodynamik. Springer, Berlin/Heidelberg (1986)Google Scholar
  129. Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice Hall, Englewood Cliffs (1971)Google Scholar
  130. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)Google Scholar
  131. Ursell, H.D.: The evaluation of Gibb’s phase-integral for imperfect gases, Proc. Cambridge Phil. Soc. 23, 685 (1927)Google Scholar
  132. Verlet, L.: Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions, Phys. Rev. 165, 201 (1968)Google Scholar
  133. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1985)Google Scholar
  134. von Randow, G.: Das Ziegenproblem. Rowohlt, Reinbek (1992)Google Scholar
  135. Voss, H., Timmer, J., Kurths, J.: Nonlinear dynamical system identification from uncertain and indirect measurements. Int. J. Bifurc. Chaos 6, 1905–1933 (2004).Google Scholar
  136. Wan, E.A., Nelson, A.T.: Neural dual extended Kalman filtering: applications in speechenhancement and monaural blind signal separation. In: IEEE Proceedings in Neural Networks for Signal Processing, Munich, pp. 466–475.Google Scholar
  137. Wegner, F.: Corrections to Scaling Laws, Phys. Rev. B 5, 4529 (1972)Google Scholar
  138. Wilson, K.G.: Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture, Phys. Rev. B 4, 31743184 (1971)Google Scholar
  139. Wilson, K.G., Kogut, J.: The renormalization group and the ε expansion. Phys. Rep. 12 C, 75–200 (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Josef Honerkamp
    • 1
  1. 1.Fakultät für Mathematilk und PhysikAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations