Disposal

Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The main disposal methods for municipal solid waste (MSW) is open dumping and sanitary landfill. Uncontrolled dump sites are smoky with a lot of leachate generation with severe environmental pollution. On open dumping grounds generate foul odors and habitat for vectors and rodents. The disposal need not have to occur within the same country. For example, some materials from waste in Bahrain are exported after being compressed to a scale below their actual size.

Keywords

Municipal Solid Waste Hazardous Waste Landfill Site Sanitary Landfill Municipal Solid Waste Landfill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbas AA, Jingsong G, Zhi Ping L, Ying Ya P, Al-Rekabi WS (2009) Review on landfill leachateleachate treatments. Am J Appl Sci 6(4):672–684CrossRefGoogle Scholar
  2. Ahn WY, Kang MS, Yim SK, Choi KH (2002) Advanced landfilllandfill leachate treatment using an integrated membrane process. Desalination 149:109–114. doi: 10.1016/S0011-9164(02)00740-3 CrossRefGoogle Scholar
  3. August H (1992) Dicht auch über Jahrhunderte—technische barri-eren für deponien (Impervious over centuries—technical liners for landfills). Chem Ind 1:17–18Google Scholar
  4. August H, Tatzky-Gerth R (1992) Neue forschungsergebnisse aus langzeituntersuchungen an verbunddichtungen als technische barriere für deponien und altlasten. (New research results of long-term tests on composite liners as a technical barrier for landfills and contaminated land). In: Thomé-Kozmiensky KJ (ed) Abdichtung von deponien und altlasten. FE-Verlag für Energie und Umwelttechnik, Berlin, pp 273–283Google Scholar
  5. August H, Tatzky-Gerth R (1991) Neue forschungsergebnisse aus langzeituntersuchungen an verbunddichtungen als technische barriere für deponien und altlasten (New research results of long-term tests on composite liners as technical barrier for landfills and contaminated land). In: Kammer der Technik, Fachkongreß ‘Umwelt-technik (eds). Universität Rostock, Tagungshand-buch 91:22–24 Google Scholar
  6. August H, Tatzky-Gerth R, Preuschmann R, Jakob I (1992) Permeationsverhalten von kombinationsdichtungen bei deponien und altlasten gegenüber wassergefährdenden stoffen (Permeation behaviour against water contaminants of composite liners for land-fills and contaminated land). UFOPLAN des BMU. Forschungs-bericht (Research report) F + E-Vorhaben. No 102 03 412 Durchgeführt von der BAM im Auftrag des Umweltbundesamtes, Berlin, August 1992Google Scholar
  7. Adams BL, Besnard F, Bogner J, Hilger H (2011) Bio-tarp alternative daily cover prototypes for methane oxidationoxidation atop open landfilllandfill cells. Waste Manag 31(5):1065–1073. doi: 10.1016/j.wasman.2011.01.003 May 2011CrossRefGoogle Scholar
  8. Cernuschi S, Giugliano M (1996) Emission and dispersion modelling of landfilllandfill gas. In: Christensen TH, Cossu R, Stegmann R (eds) Landfilling of waste. Biogas E and FN Spon, London, pp 214–233. ISBN 0 419 19400 2Google Scholar
  9. Cheung KC, Chu LM, Wong MH (1997) Ammonia strippingstripping as a pretreatment for landfilllandfill leachate. Water Air Soil Pollut 94:209–221. doi: 10.1007/BF02407103.-&gt Google Scholar
  10. Christensen TH (1996) Gas-generating processes in landfills. In: Christensen TH, Cossu R, Stegmann R (eds) Landfilling of waste. Biogas E and FN Spon, London, pp 25–50. ISBN 0 419 19400 2Google Scholar
  11. Colombo P, Brustain G, Bernardo E, Scarinci G (2003) Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr Opin Solid State Mater Sci 7(2003):225–239CrossRefGoogle Scholar
  12. DEPA (Danish Environmental Protection Agency) (1999) Waste in DekmarkGoogle Scholar
  13. EC (Europian Commission) (2003) Refuse derived fuel. Current Pract Perspect (B4-3040/2000/306517/Mar/E3), European Commission—Directorate General Environment, Final ReportGoogle Scholar
  14. EEA (2009) Annual European community greenhouse gas inventory 1990–2007 and inventory report 2009. European Environment Agency, DenmarkGoogle Scholar
  15. EPA (1999) Inventory of greenhouse gas emissions and sinks 1990–1997. Off Policy, Plan, and Eval. U.S. Environmental Protection Agency, Washington, DC, EPA 236-R-99-003. (Available on the Internet at http://www.epa.gov/globalwarming/inventory/1999-inv.html.)
  16. Kreith F (2002) Waste-to-energy compubston. In: Tchobanoglous G, Kreith F (eds). Introduction, Hand Book of Solid Waste ManagementGoogle Scholar
  17. Jose´ Edmundo A, de Souza, Fabio de A, Filho P, Bertony P. C. da Silva, Nereu VN, Teno´rio, Fabiana J. de Sousa, Rusiene M. de Almeida, Mario R. Meneghetti, Aline S. R. Barboza, Simoni M. P. Meneghetti, 2011: Biomass Residues as Fuel for the Ceramic Industry in the State of Alagoas: Brazil, Waste Biomass Valor, published on line 26 November 2011, DOI  10.1007/s12649-011-9100-8
  18. Gurijala KR, Sa P, Robinson JA (1997) Statistical modeling of methane production from landfill samples. Appl Environ Microbiol 63:3797–3803Google Scholar
  19. Peavy HS, Rowe DR, Tchobanoglous G (1986) Environmental engineering. McGrawhill book Company, New YorkGoogle Scholar
  20. Ishigaki T, Yamada M, Nagamori M, Ono Y, Inoue Y (2005) Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. Environ Geol 48:845–853CrossRefGoogle Scholar
  21. Jessberger HL (1990) Bautechnische sanierung von altlasten. (Remediation techniques for contaminated land). In: Arendt F, Hinsenveld M, van den Brink WJ (eds). Altlastensanierung ‘90. Dritter Internationaler KfK/TNO Kongress über Altlastensanierung, Karlsruhe. Kluwer Academic Publishers, Dordrechtpp, pp 1299–1306Google Scholar
  22. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. J Enzym Microbiol Technol 35:126–139CrossRefGoogle Scholar
  23. Kulikowska D, Klimiuk E (2008) The effect of landfill age on municipal leachate composition. Bioresour Technol 99:5981–5985. doi: 10.1016/j.biortech.2007.10.015 CrossRefGoogle Scholar
  24. Kuo YM, Lin TC, Tsai PJ (2006) Immobilization and encapsulation during vitrification of incineration ashes in a coke bed furnace. J Hazard Mater 133:75–78CrossRefGoogle Scholar
  25. Lema JM, Mendez R, Blazquez R (1988) Characteristics of landfill leachates and alternatives for their treatment: a review. Water Air Soil Pollut 40:223–250. doi: 10.1007/BF00163730 Google Scholar
  26. Lin CY, Chang FY, Chang CH (2000) Codigestion of leachate with septage using a UASB reactor. Bioresour Technol 73:175–178. doi: 10.1016/S0960-8524(99)00166-2 CrossRefGoogle Scholar
  27. Marco A, Esplugas S, Saum G (1997) How and why combine chemical and biological processes for wastewater treatment. Water Sci Technol 35:321–327. doi: 10.1016/S0273-1223(97)00041-3 Google Scholar
  28. Mohammed F et al (2009) Review on landfill gas emission to the atmosphere. Eur J Sci Res 30(3):427–436Google Scholar
  29. Müller W, Lüders G (1995) Geomembranes. In: Holzlöhner U, August H, Meggyes T, Brune M Landfill liner systems. A state of the art report. Anderson D, Meggyes T (eds), pp. E-1–E-14. Solid and hazardous waste research unit of the university of newcastle upon tyne. Penshaw Press, Sunderland. ISBN 0-9518806-3-2Google Scholar
  30. Meggyes T, Simmons E, McDonald C (1998) Landfill capping: engineering and restoration—part 2 engineering of landfill capping systems. Land Contam Reclam 6(1):1998Google Scholar
  31. Meggyes T, McDonald C (1995) Landfill capping systems. In: Holzlöhner U, August H, Meggyes T, Brune M. Landfill liner systems. A state of the art report. Anderson D, Meggyes T (eds) Solid and hazardous waste research unit of the university of newcastle upon tyne. Penshaw Press, Sunderland. ISBN O-9518806-3-2. pp. O-1 - O-12Google Scholar
  32. Müller W (1993) Stand der BAM-zulassungen für kunststoffdichtungsbahnen in kombinationsdichtungen (State of the BAM certifications for geomembranes in composite liners. Müll und Abfall 4:282–283Google Scholar
  33. Müller W (1995): Dichtigkeit und (Sealing efficacy and durability of materials for landfill liners). AbfallwirtschaftsJournal, 7 (1995), No. 12Google Scholar
  34. Müller W, August H, Jakob I, Tatzky-Gerth R, Vater EJ (1995) Die wirkungsweise der kombinationsdichtung—Immersionsversuche zur schadstoffmigration in deponieabdichtungssystemen. (Operation of composite liners—Immersion tests on contaminant migration in landfill liner systems). In: Bartz WJ (ed). Asphaltdichtungen im deponiebau, eine standortbestimmung, Vol 488. Kontakt and Studium, Renningen-Malmsheim, Expert-Verlag, pp 24–46. ISBN 3-8169-1296-6Google Scholar
  35. Naranjo NM, Meima JA, Haarstrick A, Hempel DC (2004) Modelling and experimental investigation of environmental influences on the acetate and methane formation in solid waste. Waste Manage (Oxford) 24:763–773CrossRefGoogle Scholar
  36. Psomopoulos CS, Bourka A, Themelis NJ (2009) Waste-to-energy: a review of the status and benefits in USA. Waste Manage (Oxford) 29(2009):1718–1724CrossRefGoogle Scholar
  37. Reinhart DR, Townsend TG (1998) Landfill bioreactor design and operation, 1st edn. Lewis Publishers, Boca Raton, p 189. ISBN 1-56670-259-3Google Scholar
  38. Rettenberger G (1988) Oberflächenabdichtungen bei sonderabfalldeponien. (Landfill cappings for hazardous waste landfills). In: Thomé-Kozmiensky KJ (ed) Deponie. ablagerung von abfällen, 2nd edn. EF-Verlag für Energie- und Umwelttechnik, Berlin, pp 440–450Google Scholar
  39. Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Assbichler S, Klein R, Lechner P (2003) Management of municipal solid waste incineration residues. Waste Manage 23:61–88CrossRefGoogle Scholar
  40. Simmons P, Goldstein N, Kaufman SM, Themelis NJ, Thompson J Jr (2006) The state of garbage in America. BioCycle 4(47):26–43Google Scholar
  41. Silva AC, Dezotti M, Sant’Anna GL Jr (2004) Treatment and detoxification of a sanitary landfill leachate. Chemosphere 55:207–214. doi: 10.1016/j.chemosphere.2003.10.013 CrossRefGoogle Scholar
  42. Sormunen K, Ettala M, Rintala J (2008) Detailed internal characterization of two finnish landfills by waste sampling. Waste Manage (Oxford) 28:151–163CrossRefGoogle Scholar
  43. Stanmore BR (2011) Generation of energy from sugarcane bagasse by thermal treatment. Waste Biomass Valor (2010) 1:77–89. doi: 10.1007/s12649-009-9000-3 CrossRefGoogle Scholar
  44. Stern JC, Chanton J, Abichou T, Powelson D, Yuan L, Escoriza S, Bogner J (2007) Use of biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Manage (Oxford) 27:1248–1258CrossRefGoogle Scholar
  45. Tecle D, Lee J, Hasan S (2008) Quantitative analysis of physical and geotechnical factors affecting methane emission in municipal solid waste landfill. Environ Geol. doi: 10.1007/s00254-008-1214-3 Google Scholar
  46. Visakh PM, Thomas Sabu (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valor 1:121–134. doi: 10.1007/s12649-010-9009-7 CrossRefGoogle Scholar
  47. Wang-Yao K, Towprayoon S, Chiemchaisri C, Gheewala SH, Nopharatana A (2006) Seasonal variation of landfill methane emission from seven solid waste disposal sites in central Thailand. The 2nd Joint International Conference on Sustainable Energy and Environment (SEE 2006), November 2006, Bangkok, Thailand, pp 21–23 http://www.jgsee.kmutt.ac.th/see1/cd/file/D-026.pdf
  48. Malkow Thomas (2004) Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. In Waste Manag 24(2004):53–79CrossRefGoogle Scholar
  49. Waste Online NA(2011) History of waste and reycling. http://www.wasteonline.org.uk/resources/InformationSheets/HistoryofWaste.htm. Accessed November 22
  50. Worrell WA, Aarne Vesilind P (2002) Solid waste engineeringGoogle Scholar
  51. Williams PT (2005) Waste treatment and disposal, 2nd edn. Wiley, England. ISBN 0-470-84912-6, pp. 171-244CrossRefGoogle Scholar
  52. World Bank (1999) Municipal solid waste incineration, technical guidance report, the world bank Washington, D.CGoogle Scholar
  53. Zaloum R, Abbott M (1997) Anaerobic pretreatment improves single sequencing batch reactor treatment of landfill leachates. Water Sci Technol 35:207–214 10.1016/S0273-1223(96)00898-0Google Scholar
  54. Che Zezhi, Gong Huijuan, Zhang Mengqun et al (2011) Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction. Waste Management 31(5):1059–1064. doi: 10.1016/j.wasman.2010.12.012 May 2011CrossRefGoogle Scholar
  55. Zhang H, He P, Shao L (2008) Methane emissions from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation. Atmos Environ, in press. doi:  10.1016/j.atmosenv.2008.03.010
  56. Zouboulis A, Jun W, Katsoyiannis A (2003) Removal of humic acids by flotation. Colloids Surf. A: Physicochem. Eng. Aspect 231:181–193. doi: 10.1016/j.colsurfa.2003.09.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Biomedical WasteKarnataka State Pollution Control BoardBangaloreIndia
  2. 2.Chemical Engineering DepartmentLoughborough UniversityLoughboroughUK

Personalised recommendations