Skip to main content

Assessing the Effect of Climate Change on Hibernating Mammals Using Nonlinear Mixed Effects Method

  • Chapter
  • First Online:
Living in a Seasonal World

Abstract

A hibernating lifestyle makes animals sensitive to the changing of the environmental temperature. Therefore, the effect of currently ongoing climate change might be considerable on these species. To assess this effect, we estimated the body mass change during hibernation under three different climate scenarios, using computational modeling. The chosen nonlinear mixed effects modeling technique was suitable to describe body mass change during hibernation. The proposed model predicted a decrease in spring emergence body mass in predicted (2070–2100) compared to control period (1960–1990). Probably this difference (~2 g) has an insignificant effect on the survival of hibernating animals. Such small disturbances can be compensated by the animals themselves or by the advantageous side effects of climate change (extended active period, enhanced primer production), but along with other disturbances, such as human activities (e.g., landscape using) might contribute to altering population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbraud C, Weimerskirch H (2001) Emperor penguins and climate change. Nature 411(6834):183–186

    Article  PubMed  CAS  Google Scholar 

  • Barclay RMR, Lausen CL, Hollis L (2001) What’s hot and what’s not: defining torpor in free-ranging birds and mammals. Can J Zool 79(10):1885–1890

    Article  Google Scholar 

  • Barnes BM (1984) Influence of energy stores on activation of reproductive function in male golden-mantled ground-squirrels. J Comp Physiol [B] 154(4):421–425

    Article  Google Scholar 

  • Barnes BM (1989) Freeze avoidance in a mammal: body temperatures below 0°C in an Arctic hibernator. Science 244(4912):1593–1595

    Article  PubMed  CAS  Google Scholar 

  • Barrett P (2003) Palaeoclimatology: cooling a continent. Nature 421(6920):221–223

    Article  PubMed  CAS  Google Scholar 

  • Bartholy J, Pongracz R, Gelybó G, Szabó P (2008) Analysis of expected climate change in the Carpathian basin using the PRUDENCE results. Időjárás 112:249–264

    Google Scholar 

  • Beal S, Sheiner LB, Boeckmann A, Bauer RJ (2011) NONMEM User’s Guides, version 7.2. Icon Development Solutions, Ellicott City

    Google Scholar 

  • Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol-Reg I 279(1):R255–R262

    CAS  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83(4):1153–1181

    PubMed  CAS  Google Scholar 

  • Dark J, Forger NG, Zucker I (1984) Rapid recovery of body mass after surgical removal of adipose tissue in ground squirrels. Proc Natl Acad Sci U S A 81(7):2270–2272

    Article  PubMed  CAS  Google Scholar 

  • Dark J, Stern JS, Zucker I (1989) Adipose tissue dynamics during cyclic weight loss and weight gain of ground squirrels. Am J Physiol-Reg I 256(6):R1286–R1292

    CAS  Google Scholar 

  • Davis DE (1976) Hibernation and circannual rhythms of food consumption in marmots and ground squirrels. Q Rev Biol 51(4):477

    Article  PubMed  CAS  Google Scholar 

  • Dobson FS, Michener GR (1995) Maternal traits and reproduction in Richardsons ground-squirrels. Ecology 76(3):851–862

    Article  Google Scholar 

  • Frank CL (2002) Short-term variations in diet fatty acid composition and torpor by ground squirrels. J Mammal 83(4):1013–1019

    Article  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds—temperature effect or physiological inhibition. J Comp Physiol [B] 158(1):25–37

    Article  CAS  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Grigg Gordon C, Beard Lyn A, Augee Michael L (2004) The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool 77(6):982–997

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Resp Physiol Neurobi 141(3):317–329

    Article  Google Scholar 

  • Hodkinson ID (1999) Species response to global environmental change or why ecophysiological models are important: a reply to Davis et al. J Anim Ecol 68(6):1259–1262

    Article  Google Scholar 

  • Humphries MM, Thomas DW, Speakman JR (2002) Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418(6895):313–316

    Article  PubMed  CAS  Google Scholar 

  • Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci USA 97(4):1630–1633

    Article  PubMed  CAS  Google Scholar 

  • Kausrud KL, Mysterud A, Steen H, Vik JO, Ostbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhoy T, Stenseth NC (2008) Linking climate change to lemming cycles. Nature 456(7218):93–97

    Article  PubMed  CAS  Google Scholar 

  • Körtner G, Geiser F (2000) The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol Int 17(2):103–128

    Article  PubMed  Google Scholar 

  • Landry-Cuerrier M, Munro D, Thomas DW, Humphries MM (2008) Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology 89(12):3306–3316

    Article  PubMed  CAS  Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Cons Biol 15(2):320–331

    Article  Google Scholar 

  • Mercer JM, Roth VL (2003) The effects of Cenozoic global change on squirrel phylogeny. Science 299(5612):1568–1572

    Article  PubMed  CAS  Google Scholar 

  • Millesi E, Huber S, Dittami J, Hoffmann I, Daan S (1998) Parameters of mating effort and success in male European ground squirrels, Spermophilus citellus. Ethology 104(4):298–313

    Article  Google Scholar 

  • Millesi E, Huber S, Everts LG, Dittami JP (1999a) Reproductive decisions in female European ground squirrels: factors affecting reproductive output and maternal investment. Ethology 105(2):163–175

    Article  Google Scholar 

  • Millesi E, Strijkstra AM, Hoffmann IE, Dittami JP, Daan S (1999b) Sex and age differences in mass, morphology, and annual cycle in European ground squirrels, Spermophilus citellus. J Mammal 80(1):218–231

    Article  Google Scholar 

  • Németh I, Nyitrai V, Altbäcker V (2009) Ambient temperature and annual timing affect torpor bouts and euthermic phases of hibernating European ground squirrels (Spermophilus citellus). Can J Zool 87(3):204–210

    Article  Google Scholar 

  • Neuhaus P, Broussard DR, Murie JO, Dobson FS (2004) Age of primiparity and implications of early reproduction on life history in female Columbian ground squirrels. J Anim Ecol 73(1):36–43

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  PubMed  CAS  Google Scholar 

  • Pillai G, Mentré F, Steimer J-L (2005) Non-linear mixed effects modeling—from methodology and software development to driving implementation in drug development science. J Pharmacokinet Pharmacodyn 32(2):161–183

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro J, Bates D (2002) Mixed effects models in S and S-Plus. Springer, New York

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core team (2008) nlme: linear and nonlinear mixed effects models. R package version 3.1-89

    Google Scholar 

  • Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk analysis for world ecosystems. Proc Natl Acad Sci USA 103(35):13116–13120

    Article  PubMed  CAS  Google Scholar 

  • Strijkstra AM, Hut RA, Millesi E, Daan S (1999) Energy expenditure during hibernation in european ground squirrels (Spermophilus citellus). In: Strijkstra AM (ed) Periodic euthermy during hibernation in the european ground squirrel: causes and consequences. PhD thesis, University of Groningen, pp 31–56

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing, version 2.13.0. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145–148

    Article  PubMed  CAS  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    Article  PubMed  CAS  Google Scholar 

  • Wang LC (1979) Time patterns and metabolic rates of natural torpor in the Richardson’s ground squirrel. Can J Zool 57:149–155

    Article  Google Scholar 

  • Yano Y, Beal SL, Sheiner LB (2001) Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn 28(2):171–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Climate change data have been provided through the PRUDENCE data archive, funded by the EU through contract EVK2-CT2001-00132. Author thanks the approval of publication for the ICON Plc, the licensor of NONMEM®. We especially thank Celeste Pongrácz and Orsolya Zeöld for their valuable comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Németh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Németh, I. (2012). Assessing the Effect of Climate Change on Hibernating Mammals Using Nonlinear Mixed Effects Method. In: Ruf, T., Bieber, C., Arnold, W., Millesi, E. (eds) Living in a Seasonal World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28678-0_7

Download citation

Publish with us

Policies and ethics