Skip to main content

Adjustments of Mitochondrial Energy Transduction in Response to Physiological and Environmental Challenge

  • Chapter
  • First Online:
Living in a Seasonal World
  • 1980 Accesses

Abstract

The energy metabolism of animals is shaped by the ecological niche and requires adaptation and acclimatisation to physiological and environmental challenge. These adjustments are complex at different systemic levels and involve regulation of ATP homeostasis at the cellular level. Mitochondria are central to the conversion of nutrient to cellular energy (ATP). Mitochondrial ATP production is not fully efficient, flexible and allows a certain degree of plasticity for physiological adjustments. As a result of an inefficient energy transduction, by-products such as mitochondrial reactive oxygen species and heat are formed. Thus, a quantifiable knowledge on mitochondrial efficiency is required to understand the significance of mitochondrial adjustments for the biology and fitness of the animal. This chapter serves as a general introduction on the principles of mitochondrial energy transduction and efficiency, how to measure mitochondrial energy transduction in isolated mitochondria, reviews past efforts to elucidate adjustments of mitochondrial mechanisms and suggests future perspectives of mitochondrial bioenergetics in integrative and comparative physiology. In particular novel technologies, such as non-invasive measurement of oxygen consumption and membrane potential with fluorescent probes, allow the assessment of energy transduction in the living cell, therefore becoming the next stage to study mitochondrial energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affourtit C, Jastroch M, Brand MD (2011) Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Rad Biol Med 50:609–616

    Article  PubMed  CAS  Google Scholar 

  • Akerman KE, Wikström MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197

    Article  PubMed  CAS  Google Scholar 

  • Birket MJ, Orr AL, Gerencser AA, Madden DT, Vitelli C, Swistowski A, Brand MD, Zeng X (2011) A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci 124(Pt 3):348–358

    Article  PubMed  CAS  Google Scholar 

  • Boutilier RG, St-Pierre J (2002) Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression. J Exp Biol 205(Pt 15):2287–2296

    PubMed  CAS  Google Scholar 

  • Brand MD (1995) Measurement of mitochondrial protonmotive force. In: Brown GC, Cooper CE (eds) Bioenergetics: a practical approach. Oxford University Press, Oxford, pp 39–62

    Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472

    Article  PubMed  CAS  Google Scholar 

  • Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, Cornwall EJ (2005) The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J 392(Pt 2):353–362

    Google Scholar 

  • Brookes PS, Buckingham JA, Tenreiro AM, Hulbert AJ, Brand MD (1998) The proton permeability of the inner membrane of liver mitochondria from ectothermic and endothermic vertebrates and from obese rats: correlations with standard metabolic rate and phospholipid fatty acid composition. Comp Biochem Physiol B Biochem Mol Biol 119(2):325–334

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217:409–427

    PubMed  CAS  Google Scholar 

  • Estabrook R (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. Methods Enzymol 10:41–47

    Article  CAS  Google Scholar 

  • Jastroch M, Buckingham JA, Helwig M, Klingenspor M, Brand MD (2007) Functional characterisation of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain. J Comp Physiol B 177(7):743–752

    Article  PubMed  CAS  Google Scholar 

  • Jastroch M, Withers KW, Taudien S, Frappell PB, Helwig M, Fromme T, Hirschberg V, Heldmaier G, McAllan BM, Firth BT, Burmester T, Platzer M, Klingenspor M (2008) Marsupial uncoupling protein 1 sheds light on the evolution of mammalian nonshivering thermogenesis. Physiol Genomics 32(2):161–169

    PubMed  CAS  Google Scholar 

  • Jastroch M, Withers KW, Stoehr S, Klingenspor M (2009) Mitochondrial proton conductance in skeletal muscle of a cold-exposed marsupial, Antechinus flavipes, is unlikely to be involved in adaptive nonshivering thermogenesis but displays increased sensitivity toward carbon-centered radicals. Physiol Biochem Zool 82(5):447–454

    Article  PubMed  CAS  Google Scholar 

  • Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD (2010) Mitochondrial proton and electron leaks. Essays Biochem 47:53–56

    Article  PubMed  CAS  Google Scholar 

  • Keipert S, Klaus S, Heldmaier G, Jastroch M (2010) UCP1 ectopically expressed in murine muscle displays native function and mitigates mitochondrial superoxide production. Biochim Biophys Acta 1797:324–330

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov AV, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS (2008) Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc 3:965–976

    Article  PubMed  CAS  Google Scholar 

  • Marcinek DJ, Schenkman KA, Ciesielski WA, Conley KE (2004) Mitochondrial coupling in vivo in mouse skeletal muscle. Am J Physiol Cell Physiol 286:C457–C463

    Article  PubMed  CAS  Google Scholar 

  • Martin SL, Maniero GD, Carey C, Hand SC (1999) Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation. Physiol Biochem Zool 72:255–264

    Article  PubMed  CAS  Google Scholar 

  • Mzilikazi N, Jastroch M, Meyer CW, Klingenspor M (2007) The molecular and biochemical basis of nonshivering thermogenesis in an African endemic mammal, Elephantulus myurus. Am J Physiol Regul Integr Comp Physiol 293(5):R2120–R2127

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (2006) Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons. J Biol Chem 281(21):14864–14874

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. Academic Press, London, p 287

    Google Scholar 

  • Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64(1):1–64

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Darley-Usmar VM, Wu M, Jensen PB, Rogers GW, Ferrick DA (2010) Bioenergetic profile experiment using C2C12 myoblast cells. J Vis Exp (46), pii: 2511. doi:10.3791/2511

  • Oelkrug R, Kutschke M, Meyer CW, Heldmaier G, Jastroch M (2010) Uncoupling protein 1 decreases superoxide production in brown adipose tissue mitochondria. J Biol Chem 285(29):21961–21968

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos ET, Heldmaier G, Frappell PB, McAllan BM, Withers KW, Klingenspor M, White CR, Jastroch M (2011a) Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak. Proc Biol Sci. doi:10.1098/rspb.2011.0881

  • Polymeropoulos ET, Jastroch M, Frappell PB (2011b) Absence of adaptive nonshivering thermogenesis in a marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). J Comp Physiol B. doi:10.1007/s00360-011-0623-x

  • Porter RK, Brand MD (1993) Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Nature 362(6421):628–630

    Article  PubMed  CAS  Google Scholar 

  • Trzcionka M, Withers KW, Klingenspor M, Jastroch M (2008) The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus. J Exp Biol 211(Pt 12):1911–1918

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ, Hulbert AJ, Storlien LH, Else PL (2004) Membrane lipids and sodium pumps of cattle and crocodiles: an experimental test of the membrane pacemaker theory of metabolism. Am J Physiol Regul Integr Comp Physiol 287:R633–R641

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jastroch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jastroch, M. (2012). Adjustments of Mitochondrial Energy Transduction in Response to Physiological and Environmental Challenge. In: Ruf, T., Bieber, C., Arnold, W., Millesi, E. (eds) Living in a Seasonal World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28678-0_34

Download citation

Publish with us

Policies and ethics