Potential Mechanisms of Metabolic SuppressionDownstream of Central A1AR Activation During Onset of Torpor

  • Tulasi R. Jinka
  • Zachary A. Barrickman
  • Lori K. Bogren
  • Trixie N. Lee
  • Jasmine M. Olson
  • Melanie M. Richter
  • Brady M. Salli
  • Timothy J. Stevenson
  • Øivind Tøien
  • C. Loren Buck
  • Kelly L. Drew


Hibernating animals demonstrate a nadir in metabolic demand and body temperature (T b) during torpor that is fundamental to adaptation to seasonal periods of reduced resource availability. A recent study shows how the brain regulates metabolic suppression during onset of torpor suggesting that central A1 adenosine receptor signaling is both necessary and sufficient to trigger decreases in metabolic rate and T b. This leads to an interesting question of how central signals are transduced to the periphery to elicit global suppression of metabolism and this chapter discusses relevant hypotheses.


Basal Metabolic Rate Ground Squirrel Ghrelin Level Metabolic Suppression Torpor Bout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


A1 adenosine receptor


Autonomic nervous system


Basal metabolic rate




Central nervous system


Hibernation induction trigger


Hydrogen sulfide






Metabolic rate


Parasympathetic nervous system


Parts per million


Temperature coefficient


Respiratory quotient


Sympathetic nervous system


Ambient temperature


Body temperature


Torpid metabolic rate


Thermoneutral zone




  1. Barnes BM, Tøien Ø, Blake J, Grahn D, Heller CH, Edgar DM (1999) Hibernation in black bears: body temperature cycles and sleep. FASEB J 13:A740Google Scholar
  2. Barraco RA, Phillis JW (1991) Subtypes of adenosine receptors in the brainstem mediate opposite blood pressure responses. Neuropharmacology 30:403–407PubMedCrossRefGoogle Scholar
  3. Barros RC, Branco LG, Carnio EC (2006) Respiratory and body temperature modulation by adenosine A1 receptors in the anteroventral preoptic region during normoxia and hypoxia. Respir Physiol Neurobiol 153:115–125PubMedCrossRefGoogle Scholar
  4. Bigelow W, Trimple AS, Schonbaum E, Kovats L (1964) A report on studies with Mannota monax. 1. Biochemical and pharmacological investigations of blood fat. Ann Acad Sci Fenn A 4:37–50Google Scholar
  5. Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518PubMedCrossRefGoogle Scholar
  6. Braulke LJ, Heldmaier G (2010) Torpor and ultradian rhythms require an intact signalling of the sympathetic nervous system. Cryobiology 60:198–203PubMedCrossRefGoogle Scholar
  7. Braulke LJ, Klingenspor M, DeBarber A, Tobias SC, Grandy DK, Scanlan TS, Heldmaier G (2008) 3-Iodothyronamine: a novel hormone controlling the balance between glucose and lipid utilisation. J Comp Physiol B 178:167–177PubMedCrossRefGoogle Scholar
  8. Bruce DS, Cope GW, Elam TR, Ruit KA, Oeltgen PR, Su TP (1987) Opioids and hibernation. I. Effects of naloxone on bear HIT’S depression of guinea pig ileum contractility and on induction of summer hibernation in the ground squirrel. Life Sci 41:2107–2113PubMedCrossRefGoogle Scholar
  9. Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regul Integr Comp Physiol 279:R255–R262PubMedGoogle Scholar
  10. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181PubMedGoogle Scholar
  11. Carman AJ, Mills JH, Krenz A, Kim DG, Bynoe MS (2011) Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci 31:13272–13280PubMedCrossRefGoogle Scholar
  12. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Physiology: hibernation in a tropical primate. Nature 429:825–826PubMedCrossRefGoogle Scholar
  13. Dawe AR, Spurrier WA (1969) Hibernation induced in ground squirrels by blood transfusion. Science 163:298–299PubMedCrossRefGoogle Scholar
  14. Dorman DC, Moulin FJ, McManus BE, Mahle KC, James RA, Struve MF (2002) Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci 65:18–25PubMedCrossRefGoogle Scholar
  15. Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102:1713–1726PubMedCrossRefGoogle Scholar
  16. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous systemcentral nervous system. Annu Rev Neurosci 24:31–55PubMedCrossRefGoogle Scholar
  17. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274PubMedCrossRefGoogle Scholar
  18. Geiser F, Song X, Körtner G (1996) The effect of He-O2 exposure on metabolic rate, thermoregulation and thermal conductance during normothermia and daily torpor. J Comp Physiol B 166:190–196CrossRefGoogle Scholar
  19. Gluck EF, Stephens N, Swoap SJ (2006) Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am J Physiol Regul Integr Comp Physiol 291:R1303–R1309PubMedCrossRefGoogle Scholar
  20. Harris MB, Milsom WK (1995) Parasympathetic influence on heart rate in euthermic and hibernating ground squirrels. J Exp Biol 198:931–937PubMedGoogle Scholar
  21. Healy JE, Ostrom CE, Wilkerson GK, Florant GL (2010) Plasma ghrelin concentrations change with physiological state in a sciurid hibernator (Spermophilus lateralis). Gen Comp Endocrinol 166:372–378PubMedCrossRefGoogle Scholar
  22. Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162:696–706PubMedCrossRefGoogle Scholar
  23. Heller HC, Colliver GW, Beard J (1977) Thermoregulation during entrance into hibernation. Pflügers Arch 369:55–59PubMedCrossRefGoogle Scholar
  24. Hook WE (1940) Effect of crude peanut oil extracts of brown fat on metabolism of white fat. Proc Sot Exp Biol Med 45:37–40Google Scholar
  25. Iliff BW, Swoap SJ (2010) Central adenosine receptor signaling is necessary for torpor in mice. In: Biology. Williams College, Massachusetts.,
  26. Jinka TR, Tøien Ø, Drew KL (2011) Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors. J Neurosci 31:10752–10758PubMedCrossRefGoogle Scholar
  27. Johannsen BW (1973) Effects of drugs on hibernation. In: Schijnbaum E, Lomax P (eds) The pharmacology of thermoregulation. Karger, Basel, pp 364–381Google Scholar
  28. Johansen K, Krog J, Reite O (1964) Autonomic nervous influence on the heart of the hypothermic hibernator. Ann Acad Sci Fenn 71:243–255Google Scholar
  29. Karpovich SA, Tøien Ø, Buck CL, Barnes BM (2009) Energetics of arousal episodes in hibernating arctic ground squirrels. J Comp Physiol B 179(6):691–700. Google Scholar
  30. Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26:13–19PubMedCrossRefGoogle Scholar
  31. Kosari S, Rathner JA, Chen F, Badoer E (2011) Centrally administered resistin enhances sympathetic nerve activity to the hindlimb but attenuates the activity to brown adipose tissue. Endocrinology 152:2626–2633PubMedCrossRefGoogle Scholar
  32. Lyman CP (1958) Oxygen consumption, body temperature and heart rate of woodchucks entering hibernation. Am J Physiol 194:83–91PubMedGoogle Scholar
  33. Lyman CP (ed) (1982) The hibernating state, recent theories of hibernation. Academic Press, New YorkGoogle Scholar
  34. Lyman CP, O’ Brien RC (1960) Circulatory changes in the thirteen-lined ground squirrel during the hibernating cycle. Bull Mus Comp Zool 124:353–372Google Scholar
  35. Lyman CP, O’Brien RC (1963) Autonomic control of circulation during the hibernating cycle in ground squirrels. J Physiol 168:477–499PubMedGoogle Scholar
  36. Margules DL, Goldman B, Finck A (1979) Hibernation: an opioid-dependent state? Brain Res Bull 4:721–724PubMedCrossRefGoogle Scholar
  37. McClure JM, O’Leary DS, Scislo TJ (2005) Stimulation of NTS A1 adenosine receptors evokes counteracting effects on hindlimb vasculature. Am J Physiol Heart Circ Physiol 289:H2536–H2542PubMedCrossRefGoogle Scholar
  38. Miyazawa S, Shimizu Y, Shiina T, Hirayama H, Morita H, Takewaki T (2008) Central A1-receptor activation associated with onset of torpor protects the heart against low temperature in the Syrian hamster. Am J Physiol Regul Integr Comp Physiol 295:R991–R996PubMedCrossRefGoogle Scholar
  39. Morrison PR, Allen WT (1962) Temperature response of white mice to implants of brown fat. J Mammal 43:13–17CrossRefGoogle Scholar
  40. Mosqueda-Garcia R, Tseng CJ, Appalsamy M, Robertson D (1989) Modulatory effects of adenosine on baroreflex activation in the brainstem of normotensive rats. Eur J Pharmacol 174:119–122PubMedCrossRefGoogle Scholar
  41. Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301:R1207–R1228PubMedCrossRefGoogle Scholar
  42. Nietschke A, Maier E (1932) Uber das Vergiftungbild nach Injektion von Extrakten aus lymphatischem Bewebe (P-Substanz) und seine Beziehung zum Winterschlaf. A Ges Exp Med 82:215–226CrossRefGoogle Scholar
  43. Ortmann S, Heldmaier G (2000) Regulation of body temperature and energy requirements of hibernating alpine marmots (Marmota marmota). Am J Physiol Regul Integr Comp Physiol 278:R698–704PubMedGoogle Scholar
  44. Osborne PG, Sato J, Shuke N, Hashimoto M (2005) Sympathetic alpha-adrenergic regulation of blood flow and volume in hamsters arousing from hibernation. Am J Physiol Regul Integr Comp Physiol 289:R554–R562PubMedCrossRefGoogle Scholar
  45. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10:638–642PubMedCrossRefGoogle Scholar
  46. Scholander PF, Hock R, Walters V, Irving L (1950) Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic ratebasal metabolic rate. Biol Bull 99:259–271PubMedCrossRefGoogle Scholar
  47. Shintani M, Tamura Y, Monden M, Shiomi H (2005) Characterization of N(6)-cyclohexyladenosine-induced hypothermia in Syrian hamsters. J Pharmacol Sci 97:451–454PubMedCrossRefGoogle Scholar
  48. Shiomi H, Tamura Y (2000) Pharmacological aspects of mammalian hibernation: central thermoregulation factors in hibernation cycle. Folia Pharmacol Jpn 116:304–312CrossRefGoogle Scholar
  49. Snapp BD, Heller CH (1981) Suppression of Metabolism during Hibernation in Ground Squirrels (Citellus lateralis). Physiol Zool 54:297–307Google Scholar
  50. Snyder GK, Nestler JR (1990) Relationships between body temperature, thermal conductance, Q10 and energy metabolism during daily torpor and hibernation in rodents. J Comp Physiol B 159:667–675PubMedCrossRefGoogle Scholar
  51. Song X, Kortner G, Geiser F (1996) Interrelations between metabolic rate and body temperature during entry into daily torpor in Sminthopsis macroura. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: the tenth international hibernation symposium. University of New England Press, Armidale, pp 63–69Google Scholar
  52. Song X, Kortner G, Geiser F (1998) Temperature selection and use of torpor by the marsupial Sminthopsis macroura. Physiol Behav 64:675–682PubMedCrossRefGoogle Scholar
  53. Strassburg S, Anker SD, Castaneda TR, Burget L, Perez-Tilve D, Pfluger PT, Nogueiras R, Halem H, Dong JZ, Culler MD, Datta R, Tschop MH (2008) Long-term effects of ghrelin and ghrelin receptor agonists on energy balance in rats. Am J Physiol Endocrinol Metab 295:E78–E84PubMedCrossRefGoogle Scholar
  54. Swoap SJ, Weinshenker D (2008) Norepinephrine controls both torpor initiation and emergence via distinct mechanisms in the mouse. PLoS ONE 3:e4038PubMedCrossRefGoogle Scholar
  55. Szentirmai E, Kapas L, Sun Y, Smith RG, Krueger JM (2009) The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice. Proc Natl Acad Sci U S A 106:14069–14074PubMedCrossRefGoogle Scholar
  56. Tattersall GJ, Milsom WK (2003) Transient peripheral warming accompanies the hypoxic metabolic response in the golden-mantled ground squirrel. J Exp Biol 206:33–42PubMedCrossRefGoogle Scholar
  57. Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909PubMedCrossRefGoogle Scholar
  58. Twente JW, Twente J (eds) (1978) Autonomic regulation of hibernation by Citellus and Eptesicus. Academic Press, New YorkGoogle Scholar
  59. Wang LC, Belke D, Jourdan ML, Lee TF, Westly J, Nurnberger F (1988) The “hibernation induction trigger”: specificity and validity of bioassay using the 13-lined ground squirrel. Cryobiology 25:355–362PubMedCrossRefGoogle Scholar
  60. Wendt CF (1937) Uber Wirkungen eines extraktes aus dem braunen Fettgewebe des Winterschlafenden Igels. Z Physiol Chem 249:182CrossRefGoogle Scholar
  61. Withers PC, Casey TM, Casey KK (1979) Allometry of respiratory and haematological parameters of arctic mammals. J Comp Physiol Behav 64:343–350Google Scholar
  62. Wojciechowski MS, Jefimow M, Tegowska E (2007) Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comp Biochem Physiol A Mol Integr Physiol 147:828–840PubMedCrossRefGoogle Scholar
  63. Zirm KL (1956) Ein Beitrag zur Kenntnis der naturlichen Winterschlafes und seines regulierenden Wirkstoffes II. Z Naturforsch 166:536–538Google Scholar
  64. Zosky GR (2002) The parasympathetic nervous system: its role during torpor in the fat-tailed dunnart (Sminthopsis crassicaudata). J Comp Physiol B 172:677–684PubMedCrossRefGoogle Scholar
  65. Zosky GR, Larcombe AN (2003) The parasympathetic nervous system and its influence on heart rate in torpid western pygmy possums, Cercatetus concinnus (Marsupialia: Burramyidae). Zoology (Jena) 106:143–150Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tulasi R. Jinka
    • 1
  • Zachary A. Barrickman
    • 2
  • Lori K. Bogren
    • 1
  • Trixie N. Lee
    • 1
  • Jasmine M. Olson
    • 1
  • Melanie M. Richter
    • 3
  • Brady M. Salli
    • 2
  • Timothy J. Stevenson
    • 2
  • Øivind Tøien
    • 1
  • C. Loren Buck
    • 2
  • Kelly L. Drew
    • 1
  1. 1.Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  2. 2.Department of Biological SciencesUniversity of Alaska AnchorageAnchorageUSA
  3. 3.Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations