Skip to main content

On the Dissimilarity of 5′-AMP Induced Hypothermia and Torpor in Mice

  • Chapter
  • First Online:

Abstract

Administration of adenosine-5′-monophosphate (5′-AMP) can induce an artificial but endogenously reversible torpor-like state in mice. The dynamics of body temperature and the relation between body temperature and metabolic rate may indicate the (dis)similarity of this artificial torpor-like state to natural torpor in intact animals. We investigated these in C57BL/6J mice by (1) comparing cooling rates during 5′-AMP induced hypothermia to cooling rates during high workload induced torpor, and by (2) estimating the relative contributions of metabolic suppression and passive temperature (Q 10) effects in the 5′-AMP induced hypothermic state. We did the latter by back-extrapolating the relation between body temperature and metabolic rate in hypothermic conditions to the euthermic temperature level, using calculated Q 10-values. The data indicate that (1) cooling rate in 5′-AMP induced hypothermia is about 1.8 times faster than in natural torpor in workload conditions, and that (2) Q 10 effects can entirely explain the metabolic reduction of 5′-AMP induced hypothermia, indicating that active metabolic suppression may be lacking. Together, this suggests fundamental differences between 5′-AMP induced hypothermia and natural torpor, limiting the validity of the paradigm to the study of effects of hypothermic conditions and temperature related metabolic effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bouma HR, Verhaag EM, Otis JP, Heldmaier G, Swoap SJ, Strijkstra AM, Henning RH, Carey HV (2012) Induction of torpor: Mimicking natural metabolic suppression for biomedical applications. J Cell Physiol 227:1285–1290

    Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    PubMed  CAS  Google Scholar 

  • Dikic D, Heldmaier G, Meyer (2008) Induced torpor in different strains of laboratory mice. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: hibernation, torpor and cryobiology. University of KwaZulu-Natal, Pietermartitzburg pp 223–230

    Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Ann Rev Physiol 66:239–274

    Article  CAS  Google Scholar 

  • Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966

    Google Scholar 

  • Heldmaier G (2011) Life on low flame in hibernation. Science 331:866–867

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Elvert R (2004) How to enter torpor: thermodynamic and physiological mechanisms of metabolic depression. In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanisms, adaptation, and application. University of Alaska Fairbanks, Fairbanks, pp 185–198

    Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    Article  PubMed  Google Scholar 

  • Heller HC (1979) Hibernation: neural aspects. Ann Rev Physiol 41:305–321

    Article  CAS  Google Scholar 

  • Hudson JW, Scott IM (1979) Daily torpor in the laboratory mouse, Mus musculus Var. albino. Physiol Zool 52:205–218

    Google Scholar 

  • Hut RA, Pilorz V, Boerema AS, Strijkstra AM, Daan S (2011) Working for food shifts nocturnal mouse activity into the day. PLoS ONE 6:e17527

    Article  PubMed  CAS  Google Scholar 

  • Lee CC (2008) Is human hibernation possible? Annu Rev Med 59:177–186

    Article  PubMed  CAS  Google Scholar 

  • Oelkrug R, Heldmaier G, Meyer CW (2011) Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice. J Comp Physiol B 181:137–145

    Article  PubMed  CAS  Google Scholar 

  • Overton JM, Williams TD (2004) Behavioral and physiologic responses to caloric restriction in mice. Physiol Behav 81:749–754

    Article  PubMed  CAS  Google Scholar 

  • Schubert KA, Boerema AS, Vaanholt LM, de Boer SF, Strijkstra AM, Daan S (2010) Daily torpor in mice: high foraging costs trigger energy-saving hypothermia. Biol Lett 6:132–135

    Article  PubMed  Google Scholar 

  • Song X, Körtner G, Geiser F (1995) Reduction of metabolic rate and thermoregulation during daily torpor. J Comp Physiol B Biochem Syst Environ Physiol 165:291–297

    Article  CAS  Google Scholar 

  • Song X, Körtner G, Geiser F (1997) Thermal relations of metabolic rate reduction in a hibernating marsupial. Am J Physiol 273:R2097–R2104

    PubMed  CAS  Google Scholar 

  • Swoap SJ, Rathvon M, Gutilla M (2007) AMP does not induce torpor. Am J Physiol Regul Integr Comp Physiol 293:R468–R473

    Article  PubMed  CAS  Google Scholar 

  • Swoap SJ, Gutilla M (2009) Cardiovascular changes during daily torpor in the laboratory mouse. Am J Physiol Regul Integr Comp Physiol 297:R769–R774

    Article  PubMed  CAS  Google Scholar 

  • Tøjen Ø, Blake J, Edgar DM, Grahn DA, Helle HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909

    Article  Google Scholar 

  • Zhang J, Kaasik K, Blackburn MR, Lee CC (2006) Constant darkness is a circadian metabolic signal in mammals. Nature 439:340–343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjen M. Strijkstra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strijkstra, A.M., Koopmans, T., Bouma, H.R., de Boer, S.F., Hut, R.A., Boerema, A.S. (2012). On the Dissimilarity of 5′-AMP Induced Hypothermia and Torpor in Mice. In: Ruf, T., Bieber, C., Arnold, W., Millesi, E. (eds) Living in a Seasonal World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28678-0_31

Download citation

Publish with us

Policies and ethics