Spontaneous Daily Torpor Versus Fasting-Induced Torpor in the Djungarian Hamster (Phodopus sungorus): Two Sides of a Medal or Distinct Phenomena?

Chapter

Abstract

During the winter months the Djungarian hamster, Phodopus sungorus, can enter spontaneous daily torpor (SDT) even in the presence of abundant food and at thermoneutral ambient temperature. This indicates that torpor is not only a response to energy shortage and that it has not only the well-known energy saving function. Here we summarise the hallmarks of SDT and compare it to the characteristics of fasting-induced torpor (FIT) in P. sungorus. Some obvious differences let us conclude that these are two forms of hypothermia and appear to be regulated by different control mechanisms. Additionally, recent evidences suggest that SDT, at least in the Djungarian hamsters, has benefits beyond the energetic advantages.

Keywords

Short Photoperiod Torpor Bout Relative Telomere Length Djungarian Hamster Reduce Food Availability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

2-DG

2-deoxy-d-glucose

i.p.

Intraperitoneal

MA

Mercaptoacetate

RQ

Respiratory quotient

SDT

Spontaneous daily torpor

FIT

Fasting-induced torpor

References

  1. Bartness TJ (1996) Photoperiod, sex, gonadal steroids, and housing density affect body fat in hamsters. Physiol Behav 60:517–529PubMedCrossRefGoogle Scholar
  2. Bartness TJ, Elliott JA, Goldman BD (1989) Control of torpor and body weight patterns by a seasonal timer in Siberian hamsters. Am J Physiol 257:R142–R149PubMedGoogle Scholar
  3. Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96:165–171PubMedCrossRefGoogle Scholar
  4. Bouma HR, Verhaag EM, Otis JP, Heldmaier G, Swoap SJ, Strijkstra AM, Henning RH, Carey HV (2011) Induction of torpor: mimicking natural metabolic suppression for biomedical applications. J Cell Physiol. doi: 10.1002/jcp.22850 Google Scholar
  5. Dark J, Lewis DA, Zucker I (1999) Hypoglycemia and torpor in Siberian hamsters. Am J Physiol 276:R776–R781PubMedGoogle Scholar
  6. Dark J, Miller DR, Licht P, Zucker I (1996) Glucoprivation counteracts effects of testosterone on daily torpor in Siberian hamsters. Am J Physiol 270:R398–R403PubMedGoogle Scholar
  7. Dark J, Miller DR, Zucker I (1994) Reduced glucose availability induces torpor in Siberian hamsters. Am J Physiol 267:R496–R501PubMedGoogle Scholar
  8. Döring H, Schwarzer K, Nuesslein-Hildesheim B, Schmidt I (1998) Leptin selectively increases energy expenditure of food-restricted lean mice. Int J Obes Relat Metab Disord 22:83–88PubMedCrossRefGoogle Scholar
  9. Duncan MJ, Goldman BD (1984) Hormonal regulation of the annual pelage color cycle in the Djungarian hamster, Phodopus sungorus. I. Role of the gonads and pituitary. J Exp Zool 230:89–95PubMedCrossRefGoogle Scholar
  10. Elliott JA, Bartness TJ, Goldman BD (1987) Role of short photoperiod and cold exposure in regulating daily torpor in Djungarian hamsters. J Comp Physiol A 161:245–253PubMedCrossRefGoogle Scholar
  11. Freeman DA, Lewis DA, Kauffman AS, Blum RM, Dark J (2004) Reduced leptin concentrations are permissive for display of torpor in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287:R97–R103PubMedCrossRefGoogle Scholar
  12. Geiser F, Christian N, Cooper CE, Körtner G, McAllan BM, Pavey CR, Turner JM, Warnecke L, Willis CKR, Brigham RM (2008) Torpor in marsupials: recent advances. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: hibernation, torpor and cryobiology. University of KwaZulu-Natal, Pietermaritzburg, pp 297–306Google Scholar
  13. Geiser F, Masters P (1994) Torpor in relation to reproduction in the mulgara, Dasycercus cristicauda (Dasyuridae: Marsupialia). J Therm Biol 1:30–40Google Scholar
  14. Goldman BD, Darrow JM (1983) The pineal gland and mammalian photoperiodism. Neuroendocrinology 37:386–396PubMedCrossRefGoogle Scholar
  15. Heldmaier G (1989) Seasonal acclimatization of energy requirements in mammals: functional significance of body weight control, hypothermia and hibernation. In: Wieser W, Gnaiger E (eds) Energy transformation in cells and organisms. Fischer, Stuttgart, pp 130–139Google Scholar
  16. Heldmaier G, Klingenspor M, Werneyer M, Lampi BJ, Brooks SP, Storey KB (1999) Metabolic adjustments during daily torpor in the Djungarian hamster. Am J Physiol 276:E896–E906PubMedGoogle Scholar
  17. Heldmaier G, Lynch GR (1986) Pineal involvement in thermoregulation and acclimatization. Pineal Res Rev 4:97–139Google Scholar
  18. Heldmaier G, Steinlechner S (1981) Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia 48:265–270CrossRefGoogle Scholar
  19. Heldmaier G, Steinlechner S, Rafael J (1982) Nonshivering thermogenesis and cold resistance during seasonal acclimatization in the Djungarian hamster. J Comp Physiol 149:1–9Google Scholar
  20. Hoffmann K (1973) The influence of photoperiod and melatonin on testis size, body weight, and pelage colour in the Djungarian hamster (Phodopus sungorus). J Comp Physiol 85:267–282CrossRefGoogle Scholar
  21. Hoffmann K (1982) The critical photoperiod in the Djungarian hamster Phodopus sungorus. In: Aschoff J, Daan S, Groos G (eds) Vertebrate circadian systems. Springer, Berlin, pp 297–304CrossRefGoogle Scholar
  22. Körtner G, Geiser F (2000) The temporal organization of daily torpor and hibernation: circadian and circannual rhythms. Chronobiol Int 17:103–128PubMedCrossRefGoogle Scholar
  23. Lynch GR, Sullivan JK, Gendler SL (1980) Temperature regulation in the mouse, Peromyscus leucopus: effects of various photoperiods, pinealectomy and melatonin administration. Int J Biometeorol 24:49–55PubMedCrossRefGoogle Scholar
  24. Malan A, Mioskowski E, Calgari C (1988) Time-course of blood acid-base state during arousal from hibernation in the European hamster. J Comp Physiol B 158:495–500PubMedCrossRefGoogle Scholar
  25. Mercer JG, Moar KM, Ross AW, Hoggard N, Morgan PJ (2000) Photoperiod regulates arcuate nucleus POMC, AGRP, and leptin receptor mRNA in Siberian hamster hypothalamus. Am J Physiol Regul Integr Comp Physiol 278:R271–R281PubMedGoogle Scholar
  26. Morgan PJ, Ross AW, Mercer JG, Barrett P (2003) Photoperiodic programming of body weight through the neuroendocrine hypothalamus. J Endocrinol 177:27–34PubMedCrossRefGoogle Scholar
  27. Morrow G, Nicol SC (2009) Cool sex? Hibernation and reproduction overlap in the echidna. PLoS ONE 4:e6070PubMedCrossRefGoogle Scholar
  28. Nestler JR (1990) Intracellular pH during daily torpor in Peromyscus maniculatus. J Comp Physiol B 159:661–666PubMedCrossRefGoogle Scholar
  29. Rousseau K, Atcha Z, Cagampang FR, Le Rouzic P, Stirland JA, Ivanov TR, Ebling FJ, Klingenspor M, Loudon AS (2002) Photoperiodic regulation of leptin resistance in the seasonally breeding Siberian hamster (Phodopus sungorus). Endocrinology 143:3083–3095PubMedCrossRefGoogle Scholar
  30. Ruby NF, Nelson RJ, Licht P, Zucker I (1993) Prolactin and testosterone inhibit torpor in Siberian hamsters. Am J Physiol 264:R123–R128PubMedGoogle Scholar
  31. Ruby NF, Zucker I (1992) Daily torpor in the absence of the suprachiasmatic nucleus in Siberian hamsters. Am J Physiol 263:R353–R362PubMedGoogle Scholar
  32. Ruf T, Klingenspor M, Preis H, Heldmaier G (1991) Daily torpor in the Djungarian hamster (Phodopus sungorus): interactions with food intake, activity, and social behaviour. J Comp Physiol B160:609–615Google Scholar
  33. Ruf T, Steinlechner S, Heldmaier G (1989) Rhythmicity of body temperature and torpor in the Djungarian hamster, Phodopus sungorus. In: Malan A, Canguilhem B (eds) Living in the cold II. John Libbey Eurotext, London, pp 53–60Google Scholar
  34. Ruf T, Stieglitz A, Steinlechner S, Blank JL, Heldmaier G (1993) Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J Exp Zool 267:104–112PubMedCrossRefGoogle Scholar
  35. Schmidt I, Döring H, Stehling O, Nuesslein-Hildesheim B, Steinlechner S, Schwarzer K (1997) Leptin disinhibits rather than stimulates sympathetically mediated energy expenditure. In: Blum WF, Kiess W, Rascher W (eds) Leptin—the voice of adipose tissue. J. A. Barth Verlag, Edition J & J, Heidelberg, pp 133–139Google Scholar
  36. Stamper JL, Dark J, Zucker I (1999) Photoperiod modulates torpor and food intake in Siberian hamsters challenged with metabolic inhibitors. Physiol Behav 66:113–118PubMedCrossRefGoogle Scholar
  37. Steinlechner S, Heldmaier G, Becker H (1983) The seasonal cycle of body weight in the Djungarian hamster: photoperiodic control and the influence of starvation and melatonin. Oecologia 60:401–405CrossRefGoogle Scholar
  38. Steinlechner S, Heldmaier G, Weber C, Ruf T (1986) Role of photoperiod: pineal gland interaction in torpor control. In: Heller HC, Wang LCH, Musacchia X (eds) Living in the cold: physiological and biochemical adaptations. Elsevier Science Publishing Co., Inc., New York, pp 301–307Google Scholar
  39. Turbill C, Bieber C, Ruf T (2011a) Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc Biol Sci 278:3355–3363Google Scholar
  40. Turbill C, Smith S, Deimel C, Ruf T (2011b) Daily torpor is associated with telomere length change over winter in Djungarian hamsters. Biol Lett. doi: 10.1098/rsbl.2011.0758
  41. Vitale PM, Darrow JM, Duncan MJ, Shustak CA, Goldman BD (1985) Effects of photoperiod, pinealectomy and castration on body weight and daily torpor in Djungarian hamsters (Phodopus sungorus). J Endocrinol 106:367–375PubMedCrossRefGoogle Scholar
  42. Wade GN, Bartness TJ (1984) Effects of photoperiod and gonadectomy on food intake, body weight, and body composition in Siberian hamsters. Am J Physiol 246:R26–R30PubMedGoogle Scholar
  43. Warnecke L, Turner JM, Geiser F (2008) Torpor and basking in a small arid zone marsupial. Naturwissenschaften 95:73–78PubMedCrossRefGoogle Scholar
  44. Weiner J (1987) Maximum energy assimilation rates in the Djungarian hamster (Phodopus sungorus). Oecologia 72:297–302CrossRefGoogle Scholar
  45. Wojciechowski MS, Jefimow M (2006) Is torpor only an advantage? Effect of thermal environment on torpor use in the Siberian hamsters (Phodopus sungorus). J Physiol Pharmacol 57(Suppl 8):83–92PubMedGoogle Scholar
  46. Yellon SM, Goldman BD (1987) Influence of short days on diurnal patterns of serum gonadotrophins and prolactin concentrations in the male Djungarian hamster (Phodopus sungorus). J Reprod Fertil 80:167–174PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of Veterinary MedicineHannoverGermany

Personalised recommendations