The Other Functions of Torpor

  • Fritz Geiser
  • R. Mark Brigham


Although energy conservation by cold-climate adult endotherms in winter is often viewed as the main function of torpor, recent evidence suggests that this may not always be the case. We examined whether other functions of torpor may be equally or even more important in some instances. Torpor enhances fat storage during migration, apparently permits prolonged female sperm storage in bats, allows reproduction with limited or fluctuating food supply, and delays parturition until more favorable periods. Torpor appears to increase the efficiency of energy and nutrient use during development. Further, torpor reduces water requirements, appears to permit persistence during droughts, reduces the load of some parasites, permits co-existence of competing species, and also reduces the risk of predation and mammalian extinctions. Thus, the functions of torpor are complex and some of these appear to be not just proximate.


Torpor Bout Sperm Storage Evaporative Water Loss Spiny Mouse Daily Torpor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dick Hill, Chris Turbill and the students from RMB’s laboratory for constructive comments. The work was supported by the ARC (FG) and NSERC (RMB).


  1. Armitage KB (2004) Badger predation on yellow-bellied marmots. Am Midl Nat 151:378–387CrossRefGoogle Scholar
  2. Arnold W, Lichtenstein AV (1991) Ectoparasite loads decrease the fitness of Alpine marmots (Marmota marmota) but not the cost of sociality. Behav Ecol 4:36–39CrossRefGoogle Scholar
  3. Audet D, Fenton MB (1988) Heterothermy and the use of torpor by the bat Eptesicus fuscus (Chiroptera: Vespertilionidae): a field study. Physiol Zool 61:197–204Google Scholar
  4. Barnes BM (1996) Relationship between hibernation and reproduction in male ground squirrels. In: Geiser F, Hulbert AJ and Nicol SC (eds) Adaptations to the Cold, 10th international hibernation symposium, University of New England Press, Armidale, pp 71–80Google Scholar
  5. Bieber C, Ruf T (2009) Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96:165–171PubMedCrossRefGoogle Scholar
  6. Birkhead TR, Møller AP (1993) Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biol J Linn Soc 50:295–311CrossRefGoogle Scholar
  7. Boyles JG, Willis CKR (2010) Could localized warm areas inside cold caves reduce mortality of hibernating bats affected by white-nose syndrome? Front Ecol Environ 8:92–98CrossRefGoogle Scholar
  8. Brigham RM (1992) Daily torpor in a free-ranging goatsucker, the common poorwill (Phalaenoptilus nuttallii). Physiol Zool 65:457–472Google Scholar
  9. Buffenstein R (1985) The effect of starvation, food restriction, and water deprivation on thermoreguation and average daily metabolic rates in Gerbillus pusillus. Physiol Zool 58:320–328Google Scholar
  10. Callait M-P, Gauthier D (2000) Parasite adaptations to hibernation in Alpine marmots (Marmota marmota). In: Heldmaier G and Klingenspor M (eds) Life in the cold. 11th international hibernation symposium, Heidelberg, Springer, pp 139–146Google Scholar
  11. Carpenter FL, Hixon MA (1988) A new function of torpor: fat conservation in a wild migrant hummingbird. Condor 90:373–378CrossRefGoogle Scholar
  12. Christian N, Geiser F (2007) To use or not to use torpor? Activity and body temperature as predictors. Naturwissenschaften 94:483–487PubMedCrossRefGoogle Scholar
  13. Chute RM (1964) Hibernation and parasitism: recent developments and some theoretical consideration. Mammalian hibernation 2. Ann Acad Sci Fenn A, 4 Biol 71:113–122Google Scholar
  14. Coggins JR, Tedesco JL, Rupprecht CE (1982) Seasonal changes and overwintering of parasites in the bat, Myotis lucifugus (Le Conte), in a Wisconsin hibernaculum. Am Midl Nat 107:305–315CrossRefGoogle Scholar
  15. Cooper CE, McAllan BM, Geiser F (2005) Effect of torpor on the water economy of an arid-zone marsupial, the striped-faced dunnart (Sminthopsis macroura). J Comp Physiol B 175:323–328PubMedCrossRefGoogle Scholar
  16. Cory Toussaint D, McKechnie AE, van der Merwe M (2010) Heterothermy in free-ranging male Egyptian free-tailed bats (Tadarida aegyptiaca) in a subtropical climate. Mamm Biol 75:466–470CrossRefGoogle Scholar
  17. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175:147–155PubMedCrossRefGoogle Scholar
  18. Doucette LI, Brigham RM, Pavey CR, Geiser F (2011) Roost type influences torpor use by Australian owlet-nightjars. Naturwissenschaften 98:845–854PubMedCrossRefGoogle Scholar
  19. Doucette LI, Brigham RM, Pavey CR, Geiser F (2012) Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Oecologia. doi: 10.1007/s00442-011-2214-7
  20. Eichhorn G, Groscolas R, Le Glaunec G, Parisel C, Arnold L, Medina P, Handrich Y (2011) Heterothermy in growing king penguins. Nat Commun 2:435. doi: 10.1038/ncomms1436 PubMedCrossRefGoogle Scholar
  21. Eisentraut M (1929) Beobachtungen über den Winterschlaf der Haselmaus (Muscardinus avellanarius L.). Z Säugetierkd 4:213–239Google Scholar
  22. Frey H, Fleming MR (1984) Torpor and thermoregulatory behaviour in free-ranging feathertail gliders (Acrobates pygmaeus) (Marsupialia: Burramyidae) in Victoria. In: Smith AP, Hume ID (eds) Possums and gliders. Surrey Beatty and Australian Mammal Society, Sydney, pp 393–401Google Scholar
  23. Geiser F (1996) Torpor in reproductive endotherms. In: Geiser F, Hulbert AJ and Nicol SC (eds) Adaptations to the cold. 10th international hibernation symposium, University of New England Press, Armidale, pp 81–86Google Scholar
  24. Geiser F (2008) Ontogeny and phylogeny of endothermy and torpor in mammals and birds. Comp Biochem Physiol A 150:176–180CrossRefGoogle Scholar
  25. Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344CrossRefGoogle Scholar
  26. Geiser F, Masters P (1994) Torpor in relation to reproduction in the Mulgara, Dasycercus cristicauda (Dasyuridae: Marsupialia). J Thermal Biol 19:33–40CrossRefGoogle Scholar
  27. Geiser F, Ruf T (1995) Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol Zool 68:935–966Google Scholar
  28. Geiser F, Turbill C (2009) Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 96:1235–1240PubMedCrossRefGoogle Scholar
  29. Geiser F, McAllan BM, Brigham RM (2005) Daily torpor in a pregnant dunnart (Sminthopsis macroura Dasyuridae: Marsupialia). Mamm Biol 70:117–121CrossRefGoogle Scholar
  30. Geiser F, Christian N, Cooper CE, Körtner G, McAllan BM, Pavey CR, Turner JM, Warnecke L, Willis CKR, Brigham RM (2008) Torpor in marsupials: recent advances. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: torpor, hibernation and cryobiology, 13th international hibernation symposium, University of KwaZulu-Natal, Pietermaritzburg, pp 297–306Google Scholar
  31. Giroud S, Turbill C, Ruf T (2012) Torpor use and body mass gain during pre-hibernation in late-born juvenile garden dormice exposed to food shortage. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world: thermoregulatory and metabolic adaptations, Springer, HeidelbergGoogle Scholar
  32. Grinevitch L, Holroyd SL, Barclay RMR (1995) Sex differences in the use of daily torpor and foraging time by big brown bats (Eptesicus fuscus) during the reproductive season. J Zool Lond 235:301–309CrossRefGoogle Scholar
  33. Hall M (1832) On hybernation. Trans Roy Soc Lond B 122:335–360CrossRefGoogle Scholar
  34. Hiebert SM (1993) Seasonality of daily torpor in a migratory hummingbird. In: Carey C, Florant GL, Wunder BA, Horwitz B (eds) Life in the cold: ecological, physiological and molecular mechanisms. Westview, Boulder, pp 25–32Google Scholar
  35. Hill RW (1975) Daily torpor in Peromyscus leucopus on an adequate diet. Comp Biochem Physiol A 51:413–423PubMedCrossRefGoogle Scholar
  36. Hill RW (1976) The ontogeny of homeothermy in neonatal Peromyscus leucopus. Physiol Zool 49:292–306Google Scholar
  37. Hollis L, Barclay RMR (2008) Developmental changes in body temperature and use of torpor by the big brown bat (Eptesicus fuscus). In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: torpor, hibernation and cryobiology, 13th international hibernation symposium, University of KwaZulu-Natal, Pietermaritzburg, pp 361–372Google Scholar
  38. Horvath A (1878) Beitrag zur Lehre über den Winterschlaf. Verh phys med Ges Würzburg 12:139–198Google Scholar
  39. Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. J Comp Physiol B 167:71–80PubMedCrossRefGoogle Scholar
  40. Ibuka N, Fukumura K (1997) Unpredictable deprivation of water increases the probability of torpor in the Syrian hamster. Physiol Behav 62:551–556PubMedCrossRefGoogle Scholar
  41. Jaeger EC (1948) Does the poorwill “hibernate”? Condor 50:45–46Google Scholar
  42. Kayser C (1939) Exchanges respiratoires des hibernants réveillés. Ann Physiol Physicochim Biol 15:1087–1219Google Scholar
  43. Kissner KJ, Brigham RM (1993) Evidence for the use of torpor by incubating and brooding common poorwills, Phalaenoptilus nuttallii. Ornis Scand 24:333–334CrossRefGoogle Scholar
  44. Körtner G, Geiser F (2009) The key to winter survival: daily torpor in a small arid zone marsupial. Naturwissenschaften 96:525–530PubMedCrossRefGoogle Scholar
  45. Körtner G, Brigham RM, Geiser F (2000) Winter torpor in a large bird. Nature 407:318PubMedGoogle Scholar
  46. Körtner G, Pavey CR, Geiser F (2008) Thermal biology, torpor and activity in free-living mulgaras in arid zone Australia during the winter reproductive season. Physiol Biochem Zool 81:442–451PubMedCrossRefGoogle Scholar
  47. Landry-Cuerrier M, Munro D, Thomas DW, Humphries MM (2008) Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology 89:3306–3316PubMedCrossRefGoogle Scholar
  48. Levy O, Dayan T, Kronfeld-Schor N (2011a) Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature. Physiol Biochem Zool 84:175–184PubMedCrossRefGoogle Scholar
  49. Levy O, Dayan T, Kronfeld-Schor N (2011b) Interspecific competition and torpor in golden spiny mice: two sides of the energy-acquisition coin. Int Comp Biol 51:441–448CrossRefGoogle Scholar
  50. Liow LH, Fortelius M, Lintulaakso K, Mannila H, Stenseth NC (2009) Lower extinction in sleep-or-hide mammals. Am Nat 173:264–272PubMedCrossRefGoogle Scholar
  51. Liu J-N, Karasov WH (2011) Hibernation in warm hibernacula by free-ranging Formosan leaf-nosed bats, Hipposideros terasensis, in subtropical Taiwan. J Comp Physiol B 181:125–135PubMedCrossRefGoogle Scholar
  52. Lourenco S, Palmeirim JM (2008) Which factors regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats? Parasitol Res 104:127–134PubMedCrossRefGoogle Scholar
  53. Lovegrove BG (2000) Daily heterothermy in mammals: coping with unpredictable environments. In: Heldmaier G and Klingenspor M (eds) Life in the cold: 11th international hibernation symposium, Springer, Heidelberg, pp 29–40Google Scholar
  54. Lyman CP (1948) The oxygen consumption and temperature regulation in hibernating hamsters. J Exp Zool 109:55–78PubMedCrossRefGoogle Scholar
  55. Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic Press, New YorkGoogle Scholar
  56. MacMillen RE (1965) Aestivation in the cactus mouse Peromyscus eremicus. Comp Biochem Physiol 16:227–247PubMedCrossRefGoogle Scholar
  57. Marshall AG (1971) The ecology of Basilia hispida (Diptera: Nycteribiidae) in Malaysia. J Anim Ecol 40:141–154CrossRefGoogle Scholar
  58. Morrow G, Nicol SC (2009) Cool sex? Hibernation and reproduction overlap in the echidna. PLoS ONE 4(6):e6070. doi: 10.1371/journal.pone.0006070 PubMedCrossRefGoogle Scholar
  59. Morton SR (1978) Torpor and nest-sharing in free-living Sminthopsis crassicaudata (Marsupialia) and Mus musculus (Rodentia). J Mammal 59:569–575CrossRefGoogle Scholar
  60. Munn AJ, Kern P, McAllan BM (2010) Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). Naturwissenschaften 97:601–605PubMedCrossRefGoogle Scholar
  61. Mzilikazi N, Lovegrove BG (2002) Reproductive activity influences thermoregulation and torpor in pouched mice, Saccostomus campestris. J Comp Physiol B 172:7–16PubMedCrossRefGoogle Scholar
  62. Nicol SC, Andersen NA (2002) The timing of hibernation in Tasmanian echidnas: why do they do it when they do? Comp Biochem Physiol B 131:603–611PubMedCrossRefGoogle Scholar
  63. Prendergast BJ, Freeman DA, Zucker I, Nelson JR (2002) Periodic arousal from hibernation is necessary for initiation of immune response in ground squirrels. Am J Physiol 282:R1054–R1062Google Scholar
  64. Racey PA (1973) Environmental factors affecting the length of gestation in heterothermic bats. J Reprod Fert Suppl 19:175–189Google Scholar
  65. Racey PA (1979) The prolonged storage and survival of spermatozoa in Chiroptera. J Reprod Fert 56:391–402CrossRefGoogle Scholar
  66. Rimbaldini DA, Brigham RM (2008) Torpor use by free-ranging pallid bats (Antrozous pallidus) at the northern extent of their range. J Mammal 89:933–941CrossRefGoogle Scholar
  67. Ruf T, Bieber C, Turbill C (2012) Survival, aging, and life-history tactics in mammalian hibernators. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world: thermoregulatory and metabolic adaptations, Springer, HeidelbergGoogle Scholar
  68. Schmid J, Speakman JR (2009) Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): a comparison of dry and wet forests. Naturwissenschaften 96:609–620PubMedCrossRefGoogle Scholar
  69. Serventy V, Raymond R (1973) Torpidity in desert mammals. Aust Wildl Heritage 14:2233–2240Google Scholar
  70. Stawski C (2010) Torpor during the reproductive season in a free-ranging subtropical bat, Nyctophilus bifax. J Thermal Biol 35:245–249CrossRefGoogle Scholar
  71. Stawski C, Geiser F (2010) Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften 97:29–35PubMedCrossRefGoogle Scholar
  72. Stawski C, Turbill C, Geiser F (2009) Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J Comp Physiol B 179:433–441PubMedCrossRefGoogle Scholar
  73. Stephenson PJ, Racey PA (1993) Reproductive energetics of the Tenrecidae (Mammalia: Insectivora). II. The shrew-tenrecs, Microgale spp. Physiol Zool 66:664–685Google Scholar
  74. Turbill C, Geiser F (2006) Thermal biology of pregnant and lactating female and male long-eared bats, Nyctophilus geoffroyi and N. gouldi. J Comp Physiol B 176:165–172PubMedCrossRefGoogle Scholar
  75. Turbill C, Bieber C, Ruf T (2011) Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc Roy Soc B 278:3355–3363CrossRefGoogle Scholar
  76. Wang LCH (1978) Energetics and field aspects of mammalian torpor: the Richardsons’s ground squirrel. In: Wang LCH, Hudson JW (eds) Strategies in cold. Academic Press, New York, pp 109–145Google Scholar
  77. Wang Z, Liang B, Racey PA, Wang Y-L, Zhang S-Y (2008) Sperm storage, delayed ovulation, and menstruation of the female Rickett’s big-footed bat (Myotis ricketti). Zool Stud 47:215–221Google Scholar
  78. Warnecke L, Turner JM, Geiser F (2008) Torpor and basking in a small arid zone marsupial. Naturwissenschaften 95:73–78PubMedCrossRefGoogle Scholar
  79. Willis CKR, Brigham RM, Geiser F (2006) Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften 93:80–83PubMedCrossRefGoogle Scholar
  80. Wimsatt WA (1960) Some problems of reproduction in relation to hibernation in bats. In: Lyman CP, Dawe AR (eds) Mammalian hibernation. Bull Mus Comp Zool, Cambridge, pp 248–270Google Scholar
  81. Withers PC, Richardson KC, Wooller RD (1990) Metabolic physiology of euthermic and torpid honey possums, Tarsipes rostratus. Aust J Zool 37:685–693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centre for Behavioural and Physiological Ecology, ZoologyUniversity of New EnglandArmidaleAustralia
  2. 2.Department of BiologyUniversity of ReginaReginaCanada

Personalised recommendations