Protein Function Prediction by Clustering of Protein-Protein Interaction Network

Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 150)


The recent advent of high throughput methods has generated large amounts of protein-protein interaction network (PPIN) data. When studying the workings of a biological cell, it is useful to be able to detect known and predict still undiscovered protein complexes within the cell’s PPINs. Such predictions may be used as an inexpensive tool to direct biological experiments. Because of its importance in the studies of protein interaction network, there are different models and algorithms in identifying functional modules in PPINs. In this paper, we present two representative methods, focusing on the comparison of their clustering properties in PPIN and their contribution towards function prediction. The work is done with PPIN data from the bakers’ yeast (Saccaromyces cerevisiae) and since the network is noisy and still incomplete, we use pre-processing and purifying. As a conclusion new progress and future research directions are discussed.


Protein interaction networks Graph clustering Protein function prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu, G.X., Glass, E.M., Karonis, N.T., Maltsev, N.: Knowledge-based voting algorithm for automated protein functional annotation. PROTEINS: Structure, Function, and Bioinformatics 61, 907–917 (2005)CrossRefGoogle Scholar
  2. 2.
    The gene ontology consortium, Gene ontology: Tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)Google Scholar
  3. 3.
    Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. PNAS 100, 21 (2003)CrossRefGoogle Scholar
  4. 4.
    Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics (4), 2 (2003)Google Scholar
  5. 5.
    Sharan, R., Ideker, T., Kelley, B., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. Computational Biology 12, 835–846 (2005)CrossRefGoogle Scholar
  6. 6.
    Przulj, N., Wigle, D.A., Jurisica, I.: Functional Topology in a Network of Protein Interactions. Bioinformatics 20(3), 340–348 (2004)CrossRefGoogle Scholar
  7. 7.
    Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A.: Global Landscape of Protein Complexes in the Yeast Saccaromyces cerevisiae. Nature 440, 637–643 (2006)CrossRefGoogle Scholar
  8. 8.
    Samanta, M.P., Liang, S.: Predicting protein functions from redundancies in large-scale protein interaction networks. PNAS 100, 22 (2003)CrossRefGoogle Scholar
  9. 9.
    Brun, C., Chevenet, F., Martin, D., Wojcik, J., Guénoche, A., Jacq, B.: Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome. Biology 5, R6 (2003)Google Scholar
  10. 10.
    Chen, J., Yuan, B.: Detecting Functional Modules in the Yeast Protein-Protein Interaction Network. Bioinformatics 22(18), 2283–2290 (2006)CrossRefGoogle Scholar
  11. 11.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark Graphs for testing Community Detection Algorithms. Physical Review E78, 046110 (2008)Google Scholar
  12. 12.
    Rives, A.W., Galitski, T.: Modular Organization of cellular Networks. PNAS 10(3), 1128–1133 (2003)CrossRefGoogle Scholar
  13. 13.
    Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The Database of Interacting Protein. Nucleic Acids Res. 32, D449–D451 (2004)Google Scholar
  14. 14.
    Guldener, U., Munsterkotter, M., Oesterheld, M., Ragel, P., Ruepp, A., Mewes, H.W.: MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res. 34, D436–D441 (2006)Google Scholar
  15. 15.
    Chatr-aryamontri, A., Ceol, A., Montecchi Palazzi, L., Nardelli, G., Schneider, M.V., Castagnoli, L., Cesareni, G.: MINT: the Molecular INTeraction database. Nucleic Acids Res. 35, D572–D574 (2007)Google Scholar
  16. 16.
    Bader, G.D., Hogue, C.W.V.: BIND–a data spec. for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 16(5), 465–477 (2000)CrossRefGoogle Scholar
  17. 17.
    Breitkreutz, B.J., Stark, C., Tyers, M.: The GRID: The General Repository for Interaction Datasets. Genome Biology 4(3), R23 (2003)Google Scholar
  18. 18.
    Dwight, S., Harris, M., Dolinski, K., Ball, C., BUnkley, G., Christie, K., Fisk, D., Issel-Tarver, L., Schroeder, M., Sherlock, G., Sethuraman, A., Weng, S., Botstein, D., Cherry, J.M.: Saccharomyces Genome Database (SGD) provides secondary gene annotation using Gene Ontology (GO). Nucleic Acids Research 30(1), 69–72 (2002)CrossRefGoogle Scholar
  19. 19.
    Letovsky, S., Kasif, S.: Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19, i197–i204 (2003)CrossRefGoogle Scholar
  20. 20.
    Dunn, R., Dudbridge, F., Sanderson, C.M.: The Use of Edge-Betweenness Clustering to Investigate Biological Function in PIN. BMC Bioinformatics 6(1), 39 (2005)CrossRefGoogle Scholar
  21. 21.
    Sen, Z., Kloczkowski, A., Jernigan, R.L.: Functional Clustering of Yeast Proteins from the Protein-Protein Interaction Network. BMC Bioinformatics 7, 355 (2006)CrossRefGoogle Scholar
  22. 22.
    Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks. PNAS 99(12), 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fortunato, S.: Community Detection in Graphs. Physics Reports 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of Computer Science and EngineeringSs. Cyril and Methodius UniversitySkopjeMacedonia

Personalised recommendations