Implementation of Hybrid Monte Carlo (Molecular Dynamics) Quantum Mechanical Methodology for Modeling of Condensed Phases on High Performance Computing Environment

  • Anastas Misev
  • Dragan Sahpaski
  • Ljupco Pejov
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 150)


The overall objective of the present work is to develop and implement a novel multi-step general computational methodology for modeling of complex condensed-phase systems on high-performance computing environments. First, molecular dynamics (MD) or Monte Carlo (MC) simulations of the free interacting clusters, as well as of clusters microsolvated by several molecules from the medium (solvent) are performed.MD orMC simulations are carried out applying either classical empirical interaction potentials, or implementing quantum mechanical MD or MC methodologies. Quantum mechanical MD simulations are carried out with the Born-Oppenheimer approach (BOMD), the Car-Parrinello (CPMD) approach, or using the atom-centered density matrix propagation scheme (ADMP). Sequential to this step, a series of suitably chosen configurations from the statistical physics simulations corresponding to the equilibrated system, which are mutually statistically independent, are subjected to further more rigorous quantum mechanical analysis. In this way, a realistic simulation of complex physico-chemical systems is enabled, in real computational time, without loosing, in statistical sense, any relevant information about the system. Due to the complexity of the algorithms which are used for this hybrid approach, it is of crucial importance to be able to implement the computational strategy on high-performance computing environment. Often, the overall CPU time which is required is very high. Therefore, achieving good parallel efficiency for calculations of such type is far from a trivial task without the use of high-performance low-latency MPI interconnect.


Monte Carlo Hydroxide Anion Hybrid Monte Carlo Monte Carlo Methodology High Performance Computing Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coutinho, K., Canuto, S.: Adv. Quantum Chem. 28, 89 (1997)CrossRefGoogle Scholar
  2. 2.
    Pejov, L., Spångberg, D., Hermansson, K.: J. Chem. Phys. 133, 174513 (2010)CrossRefGoogle Scholar
  3. 3.
    Hermansson, K., Bopp, P.A., Spångberg, D., Pejov, L., Bakó, I., Mitev, P.D.: Chem. Phys. Lett. (Frontier Article) (in press)Google Scholar
  4. 4.
    Pejov, L., Spångberg, D., Hermansson, K.: J. Phys. Chem. A 109, 5144 (2005)CrossRefGoogle Scholar
  5. 5.
    Sahpaski, D., Pejov, L., Misev, A.: LNCS (in press)Google Scholar
  6. 6.
    Helgaker, T., Uggerud, E., Jensen, H.J.A.: Chem. Phys. Lett. 173, 145 (1990)CrossRefGoogle Scholar
  7. 7.
    Uggerud, E., Helgaker, T.: J. Am. Chem. Soc. 114, 4265 (1992)CrossRefGoogle Scholar
  8. 8.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 1998 (Revision A.11). Gaussian, Inc., Pittsburgh PA (1998)Google Scholar
  9. 9.
    Schlegel, H.B., Iyengar, S.S., Li, X., Millam, J.M., Voth, G.A., Scuseria, G.E., Frisch, M.J.: J. Chem. Phys. 117, 8694 (2002)CrossRefGoogle Scholar
  10. 10.
    Schlegel, H.B., Millam, J.M., Iyengar, S.S., Voth, G.A., Daniels, A.D., Scuseria, G.E., Frisch, M.J.: J. Chem. Phys. 114, 9758 (2001)CrossRefGoogle Scholar
  11. 11.
    Iyengar, S.S., Schlegel, H.B., Millam, J.M., Voth, G.A., Scuseria, G.E., Frisch, M.J.: J. Chem. Phys. 115, 10291 (2001)CrossRefGoogle Scholar
  12. 12.
    Car, R., Parrinello, M.: Phys. Rev. Lett. 55, 2471 (1985)CrossRefGoogle Scholar
  13. 13.
    Coutinho, K., Canuto, S.: DICE: a Monte Carlo Program for Molecular Liquid Simulation. University of São Paulo, São Paulo (2003)Google Scholar
  14. 14.
    Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: J. Phys. Chem. 91, 6269 (1987)CrossRefGoogle Scholar
  15. 15.
    Ufimtsev, I.S., Kalinichev, A.G., Martinez, T.J., James Kirkpatrick, R.: Chem. Phys. Lett. 442, 128 (2007)CrossRefGoogle Scholar
  16. 16.
    Kocevski, V., Pejov, L.: J. Phys. Chem. A 114, 4354 (2010)CrossRefGoogle Scholar
  17. 17.
    Rauhot, G., Pulay, P.: J. Phys. Chem. 99, 14572 (1995)CrossRefGoogle Scholar
  18. 18.
    Chaban, C.M., Jung, J.O., Gerber, R.B.: J. Chem. Phys. 111, 1823 (1999)CrossRefGoogle Scholar
  19. 19.
    Yagi, K., Hirao, K., Taketsugu, T., Schmidt, M.W., Gordon, M.S.: J. Chem. Phys. 121, 1383 (2004)CrossRefGoogle Scholar
  20. 20.
    Simons, G., Parr, R.G., Finlan, J.M.: J. Chem. Phys. 59, 3229 (1973)CrossRefGoogle Scholar
  21. 21.
    Carney, D.G., Curtiss, L.A., Langhoff, S.R.: J. Mol. Spectrosc. 61, 371 (1976)CrossRefGoogle Scholar
  22. 22.
    Wong, M.W., Frisch, M.J., Wiberg, K.B.: J. Am. Chem. Soc. 113, 4776 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of Natural Sciences & Mathematics Institute of InformaticsUniversity Sts Cyril and MethodiusSkopjeMacedonia
  2. 2.Faculty of Natural Sciences & Mathematics Institute of ChemistryUniversity Sts Cyril and MethodiusSkopjeMacedonia

Personalised recommendations