A Jumping Gene Evolutionary Approach for Multiobjective Optimization

Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 150)


The phenomenon of Jumping genes was initially discovered by Nobel Laureate, Barbara McClintock, in her work on maize chromosome in fifties. The Jumping genes transpose from one position to another in horizontal fashion within the same chromosome or even to other chromosomes. In this paper, it is to present how this genetic transposition, after transforming into a computational method, can enhance the evolutionary multiobjective optimization. The fundamental concept, design of operations, performance justification and applications of the Jumping Gene evolutionary approach will be outlined.


Genetic Algorithm Multiobjective Optimization Nobel Laureate Multiobjective Problem Maize Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  2. 2.
    Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley (1989)Google Scholar
  3. 3.
    Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part I: A unified formulation. IEEE Trans. Syst. Man Cybern. Part A - Syst. Hum. 28, 26–37 (1998)CrossRefGoogle Scholar
  4. 4.
    Fonseca, C.M., Fleming, P.J.: Multiobjective genetic algorithms made easy: Selection, sharing and mating restriction. In: Proc. Genetic Algorithms Engineering Systems: Innovations and Applications, pp. 45–52 (1995)Google Scholar
  5. 5.
    Srinivas, N., Deb, K.: Multiobjective function optimization using nondominated sorting genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)CrossRefGoogle Scholar
  6. 6.
    Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proc. 2nd Int. Conf. on Genetic Algorithms (1987)Google Scholar
  7. 7.
    Oei, C.K., Goldberg, D.E., Chang, S.J.: Tournament selection, niching and the preservation of diversity. Technical Report (94002), Illinois GA Lab, University of Illinois (1994)Google Scholar
  8. 8.
    Fedoroff, N., Botstein, D. (eds.): The dynamic genome: Barbara McClintock’s ideas in the century of genetics, Cold Spring Harbor, New York (1992)Google Scholar
  9. 9.
    Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: concepts and applications. IEEE Trans. Ind. Electron. 43(5), 519–534 (1996)CrossRefGoogle Scholar
  10. 10.
    Man, K.F., Chan, T.M., Tang, K.S., Kwong, S.: Jumping-genes in evolutionary computing. In: Proc. Annu. Conf. IEEE Ind. Electron. Society, vol. 2, pp. 1268–1272 (2004)Google Scholar
  11. 11.
    Finnegan, D.J.: Transposable elements in eukaryotes. Int. Rev. Cytology 93, 281–326 (1985)CrossRefGoogle Scholar
  12. 12.
    Kleckner, N.: Transposable elements in prokaryotes. Annu. Rev. Genet. 15, 341–404 (1981)CrossRefGoogle Scholar
  13. 13.
    Yin, R.J.: Schema Theorem for Computational Gene Transposition and Performance Analysis. PhD Thesis, City University of Hong Kong (2010)Google Scholar
  14. 14.
    Tang, K.S., Yin, R.J., Kwong, S., Ng, K.T., Man, K.F.: A theoretical development and analysis of jumping gene genetic algorithm. IEEE Trans. Ind. Inform. 7(3), 408–418 (2011)CrossRefGoogle Scholar
  15. 15.
    Stephens, C.R., Waelbroeck, H.: Effective degrees of freedom in genetic algorithms and the block hypothesis. In: Proc. 7th Int. Conf. Genet. Algorithms, pp. 34–40 (1997)Google Scholar
  16. 16.
    Stephens, C.R., Waelbroeck, H.: Analysis of the effective degrees of freedom in genetic algorithms. Phys. Rew. D 57, 3251–3264 (1998)CrossRefGoogle Scholar
  17. 17.
    Yin, J.J., Yeung, S.H., Tang, W.K.S., Man, K.S., Kwong, S.: Enhancement of multiobjective search: A Jumping-genes approach. In: Proc. IEEE Int. Symp. Ind. Electron., Vigo, pp. 1855–1858 (2007)Google Scholar
  18. 18.
    Tang, W.K.S., Kwong, S., Man, K.F.: A jumping genes paradigm: theory, verification, and applications. IEEE Circ. Syst. Mag. 8(4), 18–36 (2008)CrossRefGoogle Scholar
  19. 19.
    Chan, T.M., Man, K.F., Kwong, S., Tang, K.S.: A jumping gene paradigm for evolutionary multiobjective optimization. IEEE Trans. Evolut. Comput. 12(2), 143–159 (2008)CrossRefGoogle Scholar
  20. 20.
    Chan, T.M., Man, K.F., Tang, K.S., Kwong, S.: Multiobjective optimization of radio-to-fiber repeater placement a jumping gene algorithm. In: Proc. IEEE Int. Conf. Ind. Technol., pp. 291–296 (2005)Google Scholar
  21. 21.
    Chan, T.M., Man, K.F., Tang, K.S., Kwong, S.: A jumping-genes paradigm for optimizing factory WLAN network. IEEE Trans. Ind. Inform. 3(1), 33–43 (2007)CrossRefGoogle Scholar
  22. 22.
    Chan, T.M., Man, K.F., Tang, K.S., Kwong, S.: A jumping gene algorithm for multiobjective resource management in wideband CDMA systems. Comput. J. 48(6), 749–768 (2005)CrossRefGoogle Scholar
  23. 23.
    Ma, H.M., Ng, K.T., Man, K.F.: Multiobjective coordinated power voltage control using jumping genes paradigm. IEEE Trans. Ind. Electron. 55(11), 4075–4084 (2008)CrossRefGoogle Scholar
  24. 24.
    Zheng, S.Y., Yeung, S.H., Chan, W.S., Man, K.F., Tang, K.S.: Design of broadband hybrid coupler with tight coupling using jumping gene evolutionary algorithm. IEEE Trans. Ind. Electron. 56(8), 2987–2991 (2009)CrossRefGoogle Scholar
  25. 25.
    Yeung, S.H., Man, K.F., Luk, K.M., Chan, C.H.: A trapeizform u-slot folded patch feed antenna design optimized with jumping genes evolutionary algorithm. IEEE Trans. Antennas Propag. 56(2), 571–577 (2008)CrossRefGoogle Scholar
  26. 26.
    Yeung, S.H., Man, K.F., Chan, W.S.: Optimised design of an ISM band antenna using a jumping genes methodology. IET Microw. Antennas Progag. 2(3), 259–267 (2008)CrossRefGoogle Scholar
  27. 27.
    Sun, S.H., Man, K.F., Wang, B.Z., Wong, T.P.: An optimized wideband quarter-wave patch antenna design. IEEE Antennas Wirel. Propag. Lett. 4(1), 486–488 (2005)CrossRefGoogle Scholar
  28. 28.
    Yang, X.S., Ng, K.T., Yeung, S.H., Man, K.F.: Jumping genes multiobjective optimization scheme for planar monopole ultrawideband antenna. IEEE Trans. Antennas Propag. 56(12), 3659–3666 (2008)CrossRefGoogle Scholar
  29. 29.
    Ripon, K.S.N., Tsang, C.H., Kwong, S.: Multi-objective evolutionary job-shop scheduling using jumping genes genetic algorithm. In: Proc. Int. Joint Conf. Neural Netw., pp. 3100–3107 (2006)Google Scholar
  30. 30.
    Rahman, M., Mondol, S., Hossain, G.S., Dey, A.K.: A hybrid jumping genes genetic algorithm based request scheduling approach in multiple destination routing. In: Proc. Int. Conf. Inf. Commun. Technol., pp. 331–335 (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Electronic EngineeringCity University of Hong KongHong KongChina

Personalised recommendations