Skip to main content

Modality Classification Using Texture Features

  • Conference paper
ICT Innovations 2011 (ICT Innovations 2011)

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 150))

Included in the following conference series:

Abstract

Medical image classification based on the image modality is one of the most important and crucial tasks in the medical image analysis. Due to its importance, the aim of the paper is to investigate modality medical image classification problem by using a combination of several classification techniques and feature extraction algorithms over a set of medical images. Four feature extraction methods were used in this paper: LBP, GLDM, GLRLM, Haralick texture features. Additionally we concatenated all four features in one single feature to assess their joint performance. The feature extraction algorithms are tested over three classifiers: SVM extended for multiclass classification based on one against all strategy, k-nearest neighbor and C4.5 algorithm. This examination was conducted over a set of medical images provided by ImageCLEF. The dataset contains 18 classes of images, with a total of 988 images. The distribution of number of images per class is not uniform, so this additionally burdens the task. The best results were provided when the images were described with concatenated descriptors and classified with SVM classifier, with a classification accuracy of 73%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Müller, H., Michoux, N., Bandon, D., Geissbuhler, A.: A review of content-based image retrieval systems in medical applications – clinical benefits and future directions. International Journal of Medical Informatics 73, 1–23 (2004)

    Article  Google Scholar 

  2. Kalpathy-Cramer, J., Hersh, W.R.: Automatic Image Modality Based Classification and Annotation to Improve Medical Image Retrieval. In: MedInfo, pp. 1334–1338 (2007)

    Google Scholar 

  3. Florea, F., Müller, H., Rogozan, A., Geissbühler, A., Darmoni, S.: Medical image categorization with MedIC andMedGIFT. In: Medical Informatics Europe (2006)

    Google Scholar 

  4. Kalpathy-Cramer, J., Hersh, W.: Multimodal medical image retrieval: image categorization to improve search precision. In: MIR 2010: Proceedings of the International Conference on Multimedia Information Retrieval, pp. 165–174. ACM, New York (2010)

    Chapter  Google Scholar 

  5. Perronnin, F., Sanchez, J., Liu, Y.: Large-scale image categorization with explicit data embedding. In: CVPR (2010)

    Google Scholar 

  6. Perronnin, F., Liu, Y., Sanchez, J., Poirier, H.: Large-scale image retrieval with compressed fisher vectors. In: CVPR (2010)

    Google Scholar 

  7. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007)

    Google Scholar 

  8. Muller, H., Kalpathy-Cramer, J., Eggel, I., Bedrick, S.: Overview of the clef 2010 medical image retrieval track. In: Working Notes of CLEF 2010, Padova, Italy (2010)

    Google Scholar 

  9. Wu, H., Hu, C., Chen, S.: UESTC at Image. CLEF 2010 Medical Retrieval Task (2010)

    Google Scholar 

  10. Kalpathy-Cramer, J., Hersh, W.: Automatic image modality based classification and annotation to improve medical image retrieval. Studies in Health Technology and Informatics 129(2), 1334 (2007)

    Google Scholar 

  11. Christopher Burges, J.C.: A Tutorial on Support Vector Machines for Pattern Recogni-tion. Data Mining and Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  12. Wareld, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, template moderated, spatially varying statistical classification. Med. Image Anal. 4(1), 43–55 (2000)

    Article  Google Scholar 

  13. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, Pittsburgh (1992)

    Chapter  Google Scholar 

  14. Kotsiantis, S.B.: Supervised Machine Learning: A Review of Classification Techniques. Informatica 31, 249–268 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New York (1999)

    MATH  Google Scholar 

  16. Burges, C.J.C.: A tutorial on support vector machine for pattern recognition. Data Min. Knowl. Disc. 2, 121 (1998)

    Article  Google Scholar 

  17. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods—Support Vector Learning, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  18. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Liu, B., Yu, P., Zhou, Z., Steinbach, M., Hand, D., Steinberg, D.: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1), 1–37 (2008)

    Article  Google Scholar 

  19. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  20. Quinlan, J.R.: Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996)

    MATH  Google Scholar 

  21. Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81–106 (1986)

    Google Scholar 

  22. Ojala, T., Pietikainen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  23. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  24. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 610–621 (1973)

    Google Scholar 

  25. Weszaka, J.S., Dyer, C.R., Rosenfeld, A.: A comperative study of texture measures for terrain classification. IEEE Trans. on Syst., Man, Cyber., 269–285 (1976)

    Google Scholar 

  26. Conners, R.W., Harlow, C.A.: A theoretical comparison of texture algorithms (1980)

    Google Scholar 

  27. Galloway, M.M.: Texture analysis using gray level run lengths, Comput. Graphics Image Processing 4, 172–179 (1975)

    Article  Google Scholar 

  28. Muller, H., Kalpathy-Cramer, J., Eggel, I., Bedrick, S., Kahn Jr., C. E., Hersh, W.: Overview of the CLEF 2010 medical image retrieval track. In: The Working Notes of CLEF 2010 (2010)

    Google Scholar 

  29. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel Methods, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  30. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, San Francisco (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Kitanovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Kitanovski, I., Trojacanec, K., Dimitrovski, I., Loskovska, S. (2012). Modality Classification Using Texture Features. In: Kocarev, L. (eds) ICT Innovations 2011. ICT Innovations 2011. Advances in Intelligent and Soft Computing, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28664-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28664-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28663-6

  • Online ISBN: 978-3-642-28664-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics