Advertisement

An Energy-Efficient Approach for Time-Space Localization in Wireless Sensor Networks

Conference paper
  • 739 Downloads
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 150)

Abstract

Space and time play a crucial role in wireless sensor networks, since sensor nodes are used to collaboratively monitor physical phenomena and their space-time properties. Wireless sensor networks (WSN) are envisioned to be used to fulfill complex monitoring tasks. A number of techniques and distributed algorithms for location estimation and time synchronization have been developed specifically for sensor networks. A similarity of time and space affects the location estimation and time synchronization, ranging from applications and requirements to basic approaches and concrete algorithmic techniques. An original approach for space and time localization in WSNs is given in this paper, also an energy-efficient approach is given, by clustering the WSNs. In both algorithms, we use only one mobile beacon for both localization and synchronization, a sensor node which moves around the sensor’s field, aware of its time and position, equipped with a GPS receiver. The synchronization component uses the packets required by the positioning component to improve its performance. The positioning component gets use from the communication, required by the synchronization component to decrease errors. A set of simulations are presented to evaluate the performance of our algorithms in order to reduce communication and processing resources and save energy and network resources.

Keywords

wireless sensor networks space-time localization a mobile beacon GPS energy-efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shikoska, U.R., Davcev, D.: Localization in Wireless Sensor Networks. In: Web Proceedings ICT Innovations, Ohrid, Republic of Macedonia, pp. 281–298 (2010) ISSN 1857 – 7288Google Scholar
  2. 2.
    Shikoska, U.R., Davcev, D.: Space and Time in Wireless Sensor Networks. In: PCO 2010, Kucing Borneo, Sarawak, pp. 73–83 (December 2010)Google Scholar
  3. 3.
    Rechkoska, U., Davcev, S.D.: Time and space localization for wireless sensor network. In: The Seventh Advanced International Conference on Telecommunications, AICT 2011, St. Maarten, The Netherlands Antilles, pp. 12–19 (March 2011) ISBN: 978-1-61208-004-8Google Scholar
  4. 4.
    Bulusu, N., Heidemann, J., Estrin, D.: GPS-less Low Cost Outdoor Localization for Very Small Devices. IEEE Personal Communications Magazine 7(5), 28–34 (2000)CrossRefGoogle Scholar
  5. 5.
    Boukerche, A., Oliveira, H., Nakamura, E.F., Loureiro, A.F.: Localization in Time and Space for Wireless Sensor Networks: A Mobile Beacon Approach. In: IEEE ISCC 2008, 04594838, pp. 1–8 (August 2008)Google Scholar
  6. 6.
    He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.F.: Range-Free Localization Schemes in Large Scale Sensor Networks. In: Proc. of ACM MOBI-COM 2003, pp. 81–95 (2003)Google Scholar
  7. 7.
    Niculescu, D., Nath, B.: Ad Hoc Positioning System (APS). In: Proc. of IEEE GLOBECOM 2001, San Antonio, vol. 5, pp. 2926–2931 (2001)Google Scholar
  8. 8.
    Niculescu, D., Nath, B.: DV Based Positioning in Ad-hoc Networks. Telecommunication Systems 22(1-4), 267–280 (2003)CrossRefGoogle Scholar
  9. 9.
    Savarese, C., Rabay, J., Langendoen, K.: Robust Positioning Algorithms for Distributed Ad-Hoc Wireless Sensor Networks. In: Proc. of USENIX Technical Annual Conference, Monterey, CA, pp. 317–327 (June 2002)Google Scholar
  10. 10.
    Capkun, S., Hamdi, M., Hubaux, J.-P.: GPS-Free Positioning in Mobile Ad-Hoc Networks. In: Proc. of 34th Hawaii International Conference on System Sciences, vol. 9, p. 9008 (2001)Google Scholar
  11. 11.
    Maroti, M., Kusy, B., Simon, G., Ledeczi, A.: The flooding time synchronization protocol. In: SenSys 2004, pp. 39–49. ACM Press, Baltimore (2004)Google Scholar
  12. 12.
    Ping, S.: Delay measurement time synchronization for wireless sensor networks. Technical Report IRB-TR-03-013, Intel Research (June 2003)Google Scholar
  13. 13.
    Niculescu, D., Nath, B.: Ad hoc positioning system (aps). In: GlobeCom 2001, San Antonio, TX, USA, pp. 2926–2931 (November 2001)Google Scholar
  14. 14.
    Oliveira, H.A., Nakamura, E.F., Loureiro, A.A., Boukerche, A.: Localization in time and space for sensor networks. In: AINA 2007, Niagara Falls, Canada (May 2007)Google Scholar
  15. 15.
    Boukerche, A., Oliveira, H.A., Nakamura, E.F., Loureiro, A.A.: A novel lightweight algorithm for time-space localization in wireless sensor networks. In: MSWiM 2007, Chania, Crete Island, Greece (October 2007)Google Scholar
  16. 16.
    Sichitiu, M.L., Ramadurai, V.: Localization of wireless sensor networks with a mobile beacon. In: MASS 2004, Florida, USA, October 2004, pp. 174–183 (2004)Google Scholar
  17. 17.
    Pathirana, P., Bulusu, N., Jha, S., Savkin, A.: Node localization using mobile robots in delay-tolerant sensor networks. IEEE Trans. on Mobile Comput. 4(4) (August 2005)Google Scholar
  18. 18.
    Romer, K.: Time Synchronization and Localization in Sensor Networks. PhD thesis, ETH Zurich, Zurich, Switzerland (June 2005)Google Scholar
  19. 19.
    Gavalas, D., Pantziou, G., Konstantopoulos, C., Mamalis, B.: Efficient Active Clustering of Mobile Ad-Hoc Networks. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 820–827. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Langendoen, K., Reijers, N.: Distributed Localization in Wireless Sensor Networks: A Quantitative Comparison. Computer Networks 43(4), 499–518 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.“St. Paul The Apostle”University for Information Science & TechnologyOhridRepublic of Macedonia

Personalised recommendations