Skip to main content

Multiple Classifier Boosting and Tree-Structured Classifiers

  • Chapter
Machine Learning for Computer Vision

Part of the book series: Studies in Computational Intelligence ((SCI,volume 411))

Abstract

Visual recognition problems often involve classification of myriads of pixels, across scales, to locate objects of interest in an image or to segment images according to object classes. The requirement for high speed and accuracy makes the problems very challenging and has motivated studies on efficient classification algorithms. A novel multi-classifier boosting algorithm is proposed to tackle the multimodal problems by simultaneously clustering samples and boosting classifiers in Section 2. The method is extended into an online version for object tracking in Section 3. Section 4 presents a tree-structured classifier, called Super tree, to further speed up the classification time of a standard boosting classifier. The proposed methods are demonstrated for object detection, tracking and segmentation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proc. ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pp. 89–98 (2003)

    Google Scholar 

  2. Jordan, M.I., Jacobs, R.A.: Hierarchical mixture of experts and the EM algorithm. Neural Computation 6(2), 181–214 (1994)

    Article  Google Scholar 

  3. Viola, P., Jones, M.: Robust real-time object detection. Int’l J. Computer Vision 57(2), 137–154 (2002)

    Article  Google Scholar 

  4. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. on PAMI 29(5), 854–869 (2007)

    Article  Google Scholar 

  5. Viola, P., Platt, J.C., Zhang, C.: Multiple Instance Boosting for Object Detection. In: Proc. Advances in Neural Information Processing Systems, pp. 1417–1426 (2006)

    Google Scholar 

  6. Li, S.Z., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Trans. on PAMI 26(9), 1112–1123 (2004)

    Article  Google Scholar 

  7. Sochman, J., Matas, J.: Waldboost - learning for time constrained sequential detection. Proc. CVPR 2, 150–157 (June 2005)

    Google Scholar 

  8. Schapire, R.: The strength of weak learnability. Machine Learning 5(2), 197–227 (1990)

    Google Scholar 

  9. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent. In: Proc. Advances in Neural Information Processing Systems, pp. 512–518 (2000)

    Google Scholar 

  10. Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression Database. IEEE Trans. on PAMI 25(12), 1615–1618 (2003)

    Article  Google Scholar 

  11. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proc. CVPR, pp. 886–893 (2005)

    Google Scholar 

  12. Rowley, H.A., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Trans. on PAMI 20(1), 23–38 (1998)

    Article  Google Scholar 

  13. Schneiderman, H., Kanade, T.: A Statistical Model for 3D Object Detection Applied to Faces and Cars. In: Proc. CVPR (June 2000)

    Google Scholar 

  14. Wu, B., Nevatia, R.: Cluster Boosted Tree Classifier for Multi-View, Multi-Pose Object Detection. In: Proc. ICCV (2007)

    Google Scholar 

  15. Huang, C., Ai, H., Li, Y., Lao, S.: Vector Boosting for Rotation Invariant Multi-View Face Detection. In: Proc. ICCV (2005)

    Google Scholar 

  16. Tu, Z.: Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering. In: Proc. ICCV (2005)

    Google Scholar 

  17. Grossmann, E.: AdaTree: boosting a weak classifier into a decision tree. In: IEEE Workshop on Learning in Computer Vision and Pattern Recognition, p. 105 (2004)

    Google Scholar 

  18. Babenko, B., Dollár, P., Tu, Z., Belongie, S.: Simultaneous learning and alignment: Multi-instance and multi-pose learning. In: ECCV Workshop on Faces in Real-Life Images (2008)

    Google Scholar 

  19. Wojek, C., Walk, S., Schiele, B.: Multi-Cue Onboard Pedestrian Detection. In: Proc. CVPR (2009)

    Google Scholar 

  20. Pham, M.T., Cham, T.J.: Fast training and selection of Haar features using statistics in boosting-based face detection. In: Proc. ICCV (2007)

    Google Scholar 

  21. Avidan, S.: Ensemble tracking. IEEE Trans. PAMI 29(2), 261–271 (2007)

    Article  Google Scholar 

  22. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: Proc. CVPR, Miami, FL (June 2009)

    Google Scholar 

  23. Black, M.J., Jepson, A.: Eigentracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 329–342. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  24. Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. on PAMI 27(10), 1631–1643 (2005)

    Article  Google Scholar 

  25. Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning and an application to boosting. J. of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, vol. 1, pp. 260–267 (2006)

    Google Scholar 

  27. Grabner, H., Leistner, C., Bischof, H.: Semi-Supervised On-line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Hall, P., Marshall, D., Martin, R.: Merging and splitting eigenspace models. IEEE Trans. on PAMI 22(9), 1042–1049 (2000)

    Article  Google Scholar 

  29. Jebara, T., Pentland, A.: Parameterized structure from motion for 3d adaptive feedback tracking of faces. In: Proc. CVPR, pp. 144–150 (June 1997)

    Google Scholar 

  30. Jones, M., Viola, P.: Fast multi-view face detection. Technical Report 96, MERL (2003)

    Google Scholar 

  31. Kim, T.-K., Cipolla, R.: MCBoost: Multiple classifier boosting for perceptual co-clustering of images and visual features. In: Proc. Advances in Neural Information Processing Systems, Vancouver, Canada (December 2008)

    Google Scholar 

  32. Lee, K.-C., Ho, J., Yang, M.-H., Kriegman, D.: Visual tracking and recognition using probabilistic appearance manifolds. Computer Vision and Image Understanding 99(3), 303–331 (2005)

    Article  Google Scholar 

  33. Avidan, S.: SpatialBoost: Adding Spatial Reasoning to AdaBoost. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 386–396. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  34. Kim, T.-K., Woodley, T., Stenger, B., Cipolla, R.: Online Multiple Classifier Boosting for Object Tracking. In: Proc. of IEEE CVPR Workshop on Online Learning for Computer Vision, San Francisco, USA (June 2010)

    Google Scholar 

  35. Zhou, S.: A binary decision tree implementation of a boosted strong classifier. In: IEEE Workshop on Analysis and Modeling of Faces and Gestures, pp. 198–212 (2005)

    Google Scholar 

  36. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  37. Quinlan, J.: Bagging, boosting, and c4.5. In: Proc. National. Conf. on Artificial Intelligence, pp. 725–730 (1996)

    Google Scholar 

  38. Schwender, H.: Minimization of Boolean Expressions Using Matrix Algebra, Technical report, Collaborative Research Center SFB 475. University of Dortmund (2007)

    Google Scholar 

  39. Chen, J.: Application of Boolean expression minimization to learning via hierarchical generalization. In: Proc. ACM Symposium on Applied Computing, pp. 303–307 (1994)

    Google Scholar 

  40. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press and McGraw-Hill (2001)

    Google Scholar 

  41. Kim, T.-K., Kim, H., Hwang, W., Kittler, J.: Component-based LDA Face Description for Image Retrieval and MPEG-7 Standardisation. Image and Vision Computing 23(7), 631–642 (2005)

    Article  Google Scholar 

  42. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and Recognition Using Structure from Motion Point Clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  43. Basak, J.: Online adaptive decision trees. Journal of Neural Computation 16, 1959–1981 (2004)

    Article  MATH  Google Scholar 

  44. Yeh, T., Lee, J., Darrell, T.: Adaptive Vocabulary Forests for Dynamic Indexing and Category Learning. In: Proc. ICCV (2007)

    Google Scholar 

  45. Rahimi, A., Recht, B.: Random Kitchen Sinks: Replacing Optimization with Randomization in Learning. In: Proc. Neural Information Processing Systems (2008)

    Google Scholar 

  46. Kim, T.-K., Budvytis, I., Cipolla, R.: Making a Shallow Network Deep: Growing a Tree from Decision Regions of a Boosting Classifier. In: Proc. of British Machine Vision Conference, Aberystwyth, UK (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Kyun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Kim, TK., Cipolla, R. (2013). Multiple Classifier Boosting and Tree-Structured Classifiers. In: Cipolla, R., Battiato, S., Farinella, G. (eds) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol 411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28661-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28661-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28660-5

  • Online ISBN: 978-3-642-28661-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics