Advertisement

Bayesian Painting by Numbers: Flexible Priors for Colour-Invariant Object Recognition

  • Jeroen C. Chua
  • Inmar E. Givoni
  • Ryan P. Adams
  • Brendan J. Frey
Part of the Studies in Computational Intelligence book series (SCI, volume 411)

Abstract

Generative models of images should take into account transformations of geometry and reflectance. Then, they can provide explanations of images that are factorized into intrinsic properties that are useful for subsequent tasks, such as object classification. It was previously shown how images and objects within images could be described as compositions of regions called structural elements or ‘stels’. In this way, transformations of the reflectance and illumination of object parts could be accounted for using a hidden variable that is used to ‘paint’ the same stel differently in different images. For example, the stel corresponding to the petals of a flower can be red in one image and yellow in another. Previous stel models have used a fixed number of stels per image and per image class. Here, we introduce a Bayesian stel model, the colour − invariant admixture (CIA) model, which can infer different numbers of stels for different object types, as appropriate. Results on Caltech101 images show that this method is capable of automatically selecting a number of stels that reflects the complexity of the object class and that these stels are useful for object recognition.

Keywords

Posterior Distribution Object Recognition Object Class Latent Dirichlet Allocation Object Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  2. 2.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Recognition and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  3. 3.
    Cao, L., Li, F.-F.: Spatially coherent latent topic model for concurrent object segmentation and classification. In: Proceedings of the Eleventh IEEE International Conference on Computer Vision (2007)Google Scholar
  4. 4.
    Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
  5. 5.
    Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research 11, 625–660 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Frey, B.J., Jojic, N.: Estimating mixture models of images and inferring spatial transformations using the EM algorithm. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 416–422 (1999)Google Scholar
  7. 7.
    Frey, B.J., Jojic, N.: Transformation-invariant clustering using the EM algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1) (2003)Google Scholar
  8. 8.
    Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with sets of image features. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, pp. 1458–1465 (2005)Google Scholar
  9. 9.
    Grenander, U.: Lectures in Pattern Theory I, II and III: Pattern Analysis, Pattern Synthesis and Regular Structures. Springer, Berlin (1976-1981)Google Scholar
  10. 10.
    Hinton, G.E.: Connectionist learning procedures. Artificial Intelligence 40, 185–234 (1989)CrossRefGoogle Scholar
  11. 11.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Jojic, N., Caspi, Y.: Capturing image structure with probabilistic index maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–219 (2004)Google Scholar
  13. 13.
    Jojic, N., Frey, B.J.: Learning flexible sprites in video layers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2001)Google Scholar
  14. 14.
    Jojic, N., Perina, A., Cristani, M., Murino, V., Frey, B.J.: Stel component analysis: Modeling spatial correlations in image class structure. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2044–2051 (2009)Google Scholar
  15. 15.
    Jojic, N., Perina, A., Cristani, M., Murino, V., Frey, B.J.: Stel component analysis: Modeling spatial correlations in image class structure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2044–2051 (2009)Google Scholar
  16. 16.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)Google Scholar
  17. 17.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  18. 18.
    Li, F.-F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Proceedings of the IEEE CVPR Workshop on Generative Model Based Vision, p. 178 (2004)Google Scholar
  19. 19.
    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision (1999)Google Scholar
  20. 20.
    Marr, D.: Vision: A computational investigation into human representation and processing of visual information. W. H. Freeman and Company, San Franciso (1982)Google Scholar
  21. 21.
    Mumford, D.: Neuronal architectures for pattern-theoretic problems. In: Koch, C., Davis, J. (eds.) Large-Scale Theories of the Cortex, pp. 125–152. MIT Press, Cambridge (1994)Google Scholar
  22. 22.
    Murphy, K.P.: Conjugate Bayesian analysis of the Gaussian distribution. Technical report. University of British Columbia (2007)Google Scholar
  23. 23.
    Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRefGoogle Scholar
  24. 24.
    Perina, A., Jojic, N., Castellani, U., Cristani, M., Murino, V.: Object Recognition with Hierarchical Stel Models. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 15–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning Research 5, 101–141 (2004)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. International Journal of Computer Vision 77, 157–173 (2008)CrossRefGoogle Scholar
  27. 27.
    Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences 104(15), 6424–6429 (2007)CrossRefGoogle Scholar
  28. 28.
    Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their locations in images. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (2005)Google Scholar
  29. 29.
    Sudderth, E.B., Torralba, A., Freeman, W.T., Willsky, A.S.: Describing visual scenes using transformed object parts. International Journal of Computer Vision 77 (2008)Google Scholar
  30. 30.
    Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. Journal of the American Statistical Association 101(476), 1566–1581 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zhu, S.C., Mumford, D.: GRADE: Gibbs reaction and diffusion equations — a framework for pattern synthesis, image denoising, and removing clutter. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (1998)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2013

Authors and Affiliations

  • Jeroen C. Chua
    • 1
  • Inmar E. Givoni
    • 1
  • Ryan P. Adams
    • 1
  • Brendan J. Frey
    • 1
  1. 1.University of TorontoTorontoCanada

Personalised recommendations