Programming Paradigm Driven Heap Analysis

  • Mark Marron
  • Ondřej Lhoták
  • Anindya Banerjee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7210)

Abstract

The computational cost and precision of a shape style heap analysis is highly dependent on the way method calls are handled. This paper introduces a new approach to analyzing method calls that leverages the fundamental object-oriented programming concepts of encapsulation and invariants. The analysis consists of a novel partial context-sensitivity heuristic and a new take on cutpoints that, in practice, provide large improvements in interprocedural analysis performance while having minimal impacts on the precision of the results.

The interprocedural analysis has been implemented for .Net bytecode and an existing abstract heap model. Using this implementation we evaluate both the runtime cost and the precision of the results on a number of well known benchmarks and real-world programs. Our experimental evaluations show that, despite the use of partial context sensitivity heuristics, the static analysis is able to precisely approximate the ideal analysis results. Further, the results show that the interprocedural analysis heuristics and the approach to cutpoints used in this work are critical in enabling the analysis of large real-world programs, over 30K bytecodes in less than 65 seconds and using less than 130 MB of memory, and which could not be analyzed with previous approaches.

Keywords

Recursive Call Abstract Domain Call Graph Recursive Structure Expression Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barr, E., Bird, C., Marron, M.: Collecting a Heap of Shapes. Technical Report MSR-TR-2011-135, Microsoft Research (December 2011)Google Scholar
  2. 2.
    Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means of bi-abduction. J. ACM (2011)Google Scholar
  3. 3.
    Chase, D., Wegman, M., Zadeck, K.: Analysis of pointers and structures. In: PLDI (1990)Google Scholar
  4. 4.
    Dillig, I., Dillig, T., Aiken, A., Sagiv, M.: Precise and compact modular procedure summaries for heap manipulating programs. In: PLDI (2011)Google Scholar
  5. 5.
    Ghiya, R., Hendren, L.J.: Is it a tree, a dag, or a cyclic graph? A shape analysis for heap-directed pointers in C. In: POPL (1996)Google Scholar
  6. 6.
    Gulwani, S., Tiwari, A.: An Abstract Domain for Analyzing Heap-Manipulating Low-Level Software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 379–392. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Guyer, S.Z., McKinley, K.S.: Finding your cronies: static analysis for dynamic object colocation. In: OOPSLA (2004)Google Scholar
  8. 8.
    Guyer, S.Z., McKinley, K.S., Frampton, D.: Free-me: a static analysis for automatic individual object reclamation. In: PLDI (2006)Google Scholar
  9. 9.
  10. 10.
    Jones, N., Muchnick, S.: Flow analysis and optimization of Lisp-like structures. In: POPL (1979)Google Scholar
  11. 11.
    Lattner, C., Adve, V.: Automatic pool allocation: improving performance by controlling data structure layout in the heap. In: PLDI (2005)Google Scholar
  12. 12.
    Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis with heap cloning practical for the real world. In: PLDI (2007)Google Scholar
  13. 13.
    Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to analysis using a BDD-based implementation. ACM Trans. Softw. Eng. Method. 18(1) (2008)Google Scholar
  14. 14.
    Ma, K.-K., Foster, J.: Inferring aliasing and encapsulation properties for Java. In: OOPSLA (2007)Google Scholar
  15. 15.
    Manevich, R., Sagiv, M., Ramalingam, G., Field, J.: Partially Disjunctive Heap Abstraction. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 265–279. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Marron, M.: Structural analysis: Combining shape analysis information with points-to analysis computation. arXiv:1201.1277v1 [cs.PL] (2012)Google Scholar
  17. 17.
    Marron, M., Hermenegildo, M., Kapur, D., Stefanovic, D.: Efficient Context-Sensitive Shape Analysis with Graph Based Heap Models. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 245–259. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Marron, M., Méndez-Lojo, M., Hermenegildo, M., Stefanovic, D., Kapur, D.: Sharing analysis of arrays, collections, and recursive structures. In: PASTE (2008)Google Scholar
  19. 19.
    Marron, M., Sanchez, C., Su, Z., Fahndrich, M.: Abstracting runtime heaps for program understanding (2011), http://heapdbg.codeplex.com/
  20. 20.
    Marron, M., Stefanovic, D., Hermenegildo, M., Kapur, D.: Heap analysis in the presence of collection libraries. In: PASTE (2007)Google Scholar
  21. 21.
    Mauborgne, L., Rival, X.: Trace Partitioning in Abstract Interpretation Based Static Analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Milanova, A., Rountev, A., Ryder, B.: Parameterized object sensitivity for points-to and side-effect analyses for Java. In: ISSTA (2002)Google Scholar
  23. 23.
    Muthukumar, K., Hermenegildo, M.: Compile-time derivation of variable dependency using abstract interpretation. JLP 13(2/3) (1992)Google Scholar
  24. 24.
    Reps, T., Lal, A., Kidd, N.: Program Analysis Using Weighted Pushdown Systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 23–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS (2002)Google Scholar
  26. 26.
    Rinetzky, N., Bauer, J., Reps, T., Sagiv, S., Wilhelm, R.: A semantics for procedure local heaps and its abstractions. In: POPL (2005)Google Scholar
  27. 27.
    Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understanding object-sensitivity. In: POPL (2011)Google Scholar
  28. 28.
    Standard Performance Evaluation Corporation. JVM98 Version 1.04 (August 1998), http://www.spec.org/jvm98
  29. 29.
    Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analysis using binary decision diagrams. In: PLDI (2004)Google Scholar
  30. 30.
    Wilson, R., Lam, M.: Efficient context-sensitive pointer analysis for C programs. In: PLDI (1995)Google Scholar
  31. 31.
    Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.: Scalable Shape Analysis for Systems Code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mark Marron
    • 1
  • Ondřej Lhoták
    • 2
  • Anindya Banerjee
    • 1
  1. 1.IMDEA Software InstituteSwitzerland
  2. 2.University of WaterlooCanada

Personalised recommendations