Advertisement

The Method of Molecular Dynamics Simulations

  • Oliver Kastner
Chapter
  • 1.8k Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 163)

Abstract

Molecular dynamics simulations are in principle the most versatile way of describing solid–solid phase transitions: the crystal and interfacial structures emerge automatically from the interatomic potential. So there is no need for implicit assumptions about microscopic details and symmetry entailed in continuum methods. In particular, the thermodynamics emerges from the molecular dynamics rather than being an input, so that all the fluctuations are incorporated properly [1]. In this chapter we present, in a nutshell, the concept of the MD method and the numerical techniques employed. We restrict ourselves to aspects essential for this work and refer to textbooks on the literature for more extensive treatises, e.g. [2, 3, 4].

Keywords

Molecular Dynamic Simulation Martensitic Transformation Molecular Dynamic Method Atomic Motion Computation Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.J. Ackland, Atomistic modelling of the shape memory effect. in Solid–Solid Phase Transformations in Inorganic Material 2005, ed. by J.M. Howe, D.E. Laughlin, J.K. Lee, U. Dahmen, W.A. Soffa. International Conference on Solid–Solid Phase Transformations in Inorganic Materials (PTM 2005), vol. 2 (Phoenix, AZ, 2005), pp. 153–164, MAY 29–JUN 03, 2005Google Scholar
  2. 2.
    W.G. Hoover, Molecular Dynamics. Lecture Notes in Physics. (Springer, 1986)Google Scholar
  3. 3.
    D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithms to Applications (Academic Press, San Diego, 1996)Google Scholar
  4. 4.
    D. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn. (Cambridge University Press, Cambridge, 2004)Google Scholar
  5. 5.
    P.C. Clapp, J. Rifkin, Nucleation of a martensite in a computer. in Proceedings of International Conference on Solid–Solid Phase Transformations, (Warrendale, PA, 1982), pp. 1165–1169, TMS-AIMEGoogle Scholar
  6. 6.
    P.C. Clapp, J. Rifkin, Simulated martensitic transformations. Proc. Mater. Res. Soc. Symp. 21, 643–656 (1983)Google Scholar
  7. 7.
    Z.-Z. Yu, P.C. Clapp, Growth dynamics study of the martensitic transformation in Fe-30 pct Ni alloys: Part II. computer simulation of martensitic growth. Metall. Trans. A 20A, 1617–1629 (1989)ADSGoogle Scholar
  8. 8.
    M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    K.S. Cheung, R.J. Harrison, S. Yip, Stress induced martensitic transformation in a molecular dynamics model of \(\alpha \)-iron. J. Appl. Phys. 71(8), 4009–4014 (1992)Google Scholar
  10. 10.
    M. Grujicic, P. Dang, Computer simulation of martensitic transformation in Fe-Ni face-centered cubic alloys. Mater. Sci. Eng. A 201, 194–204 (1995)CrossRefGoogle Scholar
  11. 11.
    M. Grujicic, P. Dang, Atomic-scale analysis of martensitic transformation in titanium alloyed with vanadium. Part II: Molecular dynamics simulations. Mater. Sci. Eng. A 205, 153–165 (1996)CrossRefGoogle Scholar
  12. 12.
    P. Dang, M. Grujicic, An atomistic simulation of the effect of crystal defects on the martensitic transformation in ti-v bcc alloys. Model. Simul. Mater. Sci. Eng. 4, 123–136 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    M. Grujicic, S.G. Lai, P. Gumbsch, Atomistic simulation study of the effect of martensitic transformation volume change on crack-tip material evolution and fracture toughness. Mater. Sci. Eng. A 231, 151–162 (1997)CrossRefGoogle Scholar
  14. 14.
    Y. Shao, P.C. Clapp, J.A. Rifkin, Molecular dynamics simulation of martensitic transformations in NiAl. Metall. Mater. Trans. A 27A, 1477–1489 (1996)Google Scholar
  15. 15.
    R.J. Meyer, Computersimulation martensitischer Phasenübergänge in Eisen-Nickel- und Eisen-Aluminium-Legierungen, Ph.D. thesis, Gerhard-Mercator-Universität-Gesamthochschule Duisburg, 15 April 1998, Group of Prof. EntelGoogle Scholar
  16. 16.
    X. Zhang, B. Li, Z. Sun, R. Li, Dislocation model and morphology simulation of bcc \(\leftrightarrow \) fcc martensitic transformation. J. Mater. Sci. Technol. 16(4), 370–374 (2000)Google Scholar
  17. 17.
    A.R. Kuznetsov, Y.N. Gornostyrev, M.I. Katsnelson, A.V. Trefilov, Effect of the dislocations on the kinetics of a martensitic transition md simulation of bcc-hcp transformation in Zr. Mater. Sci. Eng. A 309–310, 168–172 (2001)Google Scholar
  18. 18.
    K. Kadau, Molekulardynamik-Simulation von strukturellen Phasenumwandlungen in Festkörpern, Nanopartikeln und ultradünnen Filmen, Ph.D. thesis, Gerhard-Mercator-Universität-Gesamthochschule Duisburg, 9. März 2001, Group of Prof. EntelGoogle Scholar
  19. 19.
    M.I. Mendelev, G.J. Ackland, Development of an interatomic potential appropriate for simulation of phase transformations in zirconium. Phil. Mag. Lett. 87, 349–359 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    G.J. Ackland, S.J. Wooding, D.J. Bacon, Defect, surface and displacement-threshold properties of -zirconium simulated with a many-body potential. Phil. Mag. A 71, 553–565 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    U. Pinsook, G.J. Ackland, Simulation of martensitic microstructural evolution in zirconium. Phys. Rev. B 58(17), 11252 (1998)Google Scholar
  22. 22.
    U. Pinsook, G.J. Ackland, Atomistic simulation of shear in a martensitic twinned microstructure. Phys. Rev. B 62(9), 5427–5434 (2000)Google Scholar
  23. 23.
    O. Kastner, Molecular dynamics of a 2D model of the shape memory effect. Part I: Model and simulations. Continuum Mech. Therm. 15(5), 487–502 (2003)Google Scholar
  24. 24.
    O. Kastner, Zweidimensionale molekular-dynamische Untersuchung des Austenit \(\leftrightarrow \) Martensit Phasenübergangs in Formgedächtnislegierungen, Ph.D. thesis, Technical University of Berlin, 2003Google Scholar
  25. 25.
    O. Kastner, Molecular dynamics of a 2D model of the shape memory effect. Part II: Thermodynamics of a small system. Continuum Mech. Therm. 18(1–2), 63–81 (2006)Google Scholar
  26. 26.
    R.S. Elliott, J.A. Shaw, N. Triantafyllidis, Stability of thermally-induced martensitic transformations in bi-atomic crystals. J. Mech. Phys. Solids 50, 2463–2493 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    X.D. Ding, T. Suzuki, X.B. Ren, J. Sun, K. Otsuka, Precursors to stress-induced martensitic transformations and associated superelasticity: Molecular dynamics simulations and an analytical theory. Phys. Rev. B 74, 104111-1–104111-10 (2006)Google Scholar
  28. 28.
    F.E. Hildebrand, R. Abeyaratne, An atomistic investigation of the kinetics of detwinning. J. Mech. Phys. Solids 56(4), 1296–1319 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    L. Verlet, Computer "experiments" on classical fluids. i. thermodynamical properties of lennard–jones molecules. Phys. Rev. 159(1), 98 (1967)ADSCrossRefGoogle Scholar
  30. 30.
    W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 67, 637–649 (1982), The scheme is derived in the appendixGoogle Scholar
  31. 31.
    D. Beeman, Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys. 20(2), 130–139 (1976)ADSCrossRefGoogle Scholar
  32. 32.
    S. Nose, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52(2), 255–268 (1984)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    W.G. Hoover, Canonical dynamics: Eqilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72(4), 2384–2393 (1980)ADSCrossRefGoogle Scholar
  35. 35.
    N. Metropolis, A.W. Metropolis, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1097 (1953)ADSCrossRefGoogle Scholar
  36. 36.
    M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    M. Parrinello, A. Rahman, Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 45(14), 1196–1199 (1980)ADSCrossRefGoogle Scholar
  38. 38.
    Edinburgh Parallel Computing Centre (EPCC), Internet resource, http://www.epcc.ed.ac.uk
  39. 39.
    John von Neumann Institute for Computing (NIC), Internet resource, http://www.fz-juelich.de/nic
  40. 40.
    W. Gropp, W. Lusk, A. Skjellum, in Using MPI. Portable parallel programming with the Message-passing interface, Scientific and Engineering Computation Series, 1999Google Scholar
  41. 41.
    H. Brunst, D. Kranzlmüller, M.S. Muller, W.E. Nagel, Tools for scalable parallel program analysis: VAMPIR NG, MARMOT, and DeWiz. Int. J. Comput. Sci. Eng. 4(3), 149–161 (2009)Google Scholar
  42. 42.
    M. Woo, J. Neider, T. Davis, D. Shreiner, OpenGL Programming Guide (Addison-Wesley, Reading, 1999)Google Scholar
  43. 43.
    P. Rademacher, GLUI user interface library. Internet resource (2006), http://glui.sourceforge.net/
  44. 44.
    G.J. Ackland, A.P. Jones, Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B 73(5), 054104-1–054104-7 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oliver Kastner
    • 1
  1. 1.Faculty of Mechanical Engineering, Institute for MaterialsRuhr University BochumBochumGermany

Personalised recommendations