Advertisement

On the Adequacy of Three POS Taggers and a Dependency Parser

  • Ramadan Alfared
  • Denis Béchet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7181)

Abstract

A POS-tagger can be used in front of a parser to reduce the number of combinations of possible dependency trees which, in the majority, give spurious analyses. In the paper we compare the results of the addition of three morphological taggers to the parser of the CDG Lab. The experimental results show that these models perform better than the model which do not use a morphological tagger at the cost of loosing some correct analyses. In fact, the adequacy of these solutions is mainly based on the compatibility between the lexical units defined by the taggers and the dependency grammar.

Keywords

Syntactic Category Dependency Tree Past Participle Lexical Unit Categorial Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeillé, A., Barrier, N.: Enriching a french treebank. In: Proc. of LREC 2004, Lisbon, Portugal (2004)Google Scholar
  2. 2.
    Alfared, R., Béchet, D., Dikovsky, A.: “cdg lab”: a toolbox for dependency grammars and dependency treebanks development. In: Gerdes, K., Hajicova, E., Wanner, L. (eds.) Proc. of the 1st Intern. Conf. on Dependency Linguistics (Depling 2011), Barcelona, Spain (September 2011)Google Scholar
  3. 3.
    Béchet, D., Dikovsky, A., Foret, A.: Dependency Structure Grammars. In: Blache, P., Stabler, E.P., Busquets, J.V., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 18–34. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Boguslavsky, I., Iomdin, L., Sizov, V., Tsinman, L., Petrochenkov, V.: Rule-based dependency parser refined by empirical and corpus statistics. In: Proc. of the 1st Intern. Conf. on Dependency Linguistics (Depling 2011), Barcelona, Spain (September 2011)Google Scholar
  5. 5.
    Brill, E.: Some advances in transformation-based part of speech tagging. In: Proceedings of the Twelfth National Conference on Artificial Intelligence, pp. 722–727 (1994)Google Scholar
  6. 6.
    Candito, M., Crabbé, B., Denis, P.: Statistical french dependency parsing: Treebank conversion and first results. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh Conference on International Language Resources and Evaluation (LREC 2010). European Language Resources Association (ELRA), Valletta (2010)Google Scholar
  7. 7.
    Collins, M., Hajic, J., Ramshaw, L., Tillmann, C.: A statistical parser for Czech. In: ACL 1999 (1999)Google Scholar
  8. 8.
    Dekhtyar, M., Dikovsky, A.: Categorial dependency grammars. In: Moortgat, M. (ed.) Proceedings of Categorial Grammars 2004, pp. 76–91 (2004)Google Scholar
  9. 9.
    Dekhtyar, M., Dikovsky, A.: Generalized categorial dependency grammars. In: Pillars of Computer Science 2008, pp. 230–255 (2008)Google Scholar
  10. 10.
    Denis, P., Sagot, B.: Coupling an annotated corpus and a morphosyntactic lexicon for state-of-the-art POS tagging with less human effort. In: Pacific Asia Conference on Language, Information and Computation, Hong Kong, China (2009)Google Scholar
  11. 11.
    Dikovsky, A.: Categorial dependency grammars: from theory to large scale grammars. In: Gerdes, K., Hajicova, E., Wanner, L. (eds.) Proc. of the 1st Intern. Conf. on Dependency Linguistics (Depling 2011), Barcelona, Spain (September 2011)Google Scholar
  12. 12.
    Dikovsky, A.: Dependencies as categories. In: “Recent Advances in Dependency Grammars”, COLING 2004 Workshop, pp. 90–97 (2004)Google Scholar
  13. 13.
    Dikovsky, A.: Towards wide coverage categorical dependency grammars. In: Proceedings of the ESSLLI 2009 Workshop Parsing with Categorial Grammars - Parsing with Categorial Grammars Workshop ESSLLI 2009 Book of Abstracts, pp. 230–255 (2009)Google Scholar
  14. 14.
    Eryiğit, G., Oflazer, K.: Statistical dependency parsing for turkish. In: EACL 2006, pp. 89–96 (2006)Google Scholar
  15. 15.
    Marinov, S., Nivre, J.: A data-driven dependency parser for bulgarian. In: Proceedings of TLT, pp. 89–100 (2005)Google Scholar
  16. 16.
    McDonald, R.: Discriminative Training and Spanning Tree Algorithms for Dependency Parsing. Ph.D. thesis, University of Pennsylvania (July 2006)Google Scholar
  17. 17.
    Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact, and interpretable tree annotation. In: ACL 2006, pp. 433–440 (2006)Google Scholar
  18. 18.
    Sagot, B.: The lefff, a freely available and large-coverage morphological and syntactic lexicon for french. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh Conference on International Language Resources and Evaluation (LREC 2010). European Language Resources Association (ELRA), Valletta (2010)Google Scholar
  19. 19.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of International Conference on New Methods in Language Processing, Manchester, UK (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ramadan Alfared
    • 1
  • Denis Béchet
    • 1
  1. 1.LINAUniversity of NantesNantesFrance

Personalised recommendations