Building Subjectivity Lexicon(s) from Scratch for Essay Data

  • Beata Beigman Klebanov
  • Jill Burstein
  • Nitin Madnani
  • Adam Faulkner
  • Joel Tetreault
Conference paper

DOI: 10.1007/978-3-642-28604-9_48

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7181)
Cite this paper as:
Beigman Klebanov B., Burstein J., Madnani N., Faulkner A., Tetreault J. (2012) Building Subjectivity Lexicon(s) from Scratch for Essay Data. In: Gelbukh A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2012. Lecture Notes in Computer Science, vol 7181. Springer, Berlin, Heidelberg

Abstract

While there are a number of subjectivity lexicons available for research purposes, none can be used commercially. We describe the process of constructing subjectivity lexicon(s) for recognizing sentiment polarity in essays written by test-takers, to be used within a commercial essay-scoring system. We discuss ways of expanding a manually-built seed lexicon using dictionary-based, distributional in-domain and out-of-domain information, as well as using Amazon Mechanical Turk to help “clean up” the expansions. We show the feasibility of constructing a family of subjectivity lexicons from scratch using a combination of methods to attain competitive performance with state-of-art research-only lexicons. Furthermore, this is the first use, to our knowledge, of a paraphrase generation system for expanding a subjectivity lexicon.

Keywords

essay writing sentiment analysis sentiment polarity subjectivity lexicon C5.0 lexicon expansion paraphrase generation thesaurus resources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Beata Beigman Klebanov
    • 1
  • Jill Burstein
    • 1
  • Nitin Madnani
    • 1
  • Adam Faulkner
    • 2
  • Joel Tetreault
    • 1
  1. 1.Educational Testing ServiceUSA
  2. 2.Graduate CenterThe City University of New YorkUSA

Personalised recommendations