Advertisement

A Generate-and-Test Method of Detecting Negative-Sentiment Sentences

  • Yoonjung Choi
  • Hyo-Jung Oh
  • Sung-Hyon Myaeng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7181)

Abstract

Sentiment analysis requires human efforts to construct clue lexicons and/or annotations for machine learning, which are considered domain-dependent. This paper presents a sentiment analysis method where clues are learned automatically with a minimum training data at a sentence level. The main strategy is to learn and weight sentiment-revealing clues by first generating a maximal set of candidates from the annotated sentences for maximum recall and learning a classifier using linguistically-motivated composite features at a later stage for higher precision. The proposed method is geared toward detecting negative sentiment sentences as they are not appropriate for suggesting contextual ads. We show how clue-based sentiment analysis can be done without having to assume availability of a separately constructed clue lexicon. Our experimental work with both Korean and English news corpora shows that the proposed method outperforms word-feature based SVM classifiers. The result is especially encouraging because this relatively simple method can be used for documents in new domains and time periods for which sentiment clues may vary.

Keywords

Sentiment Analysis Opinion Analysis Contextual Advertising 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choi, Y., Cardie, C.: Learning withCompositional Semantics as Structural Inference forSubsentential Sentiment Analysis. In: Proc. of EMNLP 2008 (2008) Google Scholar
  2. 2.
    Choi, Y., Kim, Y., Myaeng, S.-H.: Domain-specific Sentiment Analysis using Contextual Feature Generation. In: Proc. of CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion Measurement, TSA (2009) Google Scholar
  3. 3.
    Choi, Y., Jung, Y., Myaeng, S.-H.: Identifying Controversial Issues and their Sub-topics in News Articles. In: Chen, H., Chau, M., Li, S.-H., Urs, S., Srinivasa, S., Wang, G.A. (eds.) PAISI 2010. LNCS, vol. 6122, pp. 140–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Durant, K.T., Smith, M.D.: Predicting the Political Sentiment of Web Log Posts using Supervised Machine Learning Techniques Coupled with Feature Selection. In: Nasraoui, O., Spiliopoulou, M., Srivastava, J., Mobasher, B., Masand, B. (eds.) WebKDD 2006. LNCS (LNAI), vol. 4811, pp. 187–206. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Esuli, A., Sebastian, F.: SentiWordNet: A Publicly Available Lexical Resource for Opinion Mining. In: Proc. of the LREC 2006 (2006) Google Scholar
  6. 6.
    Fan, T.-K., Chang, C.-H.: Sentiment-oriented Contextual Advertising. Knowledge Information System 23 (2010) Google Scholar
  7. 7.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998) Google Scholar
  8. 8.
    Jia, L., Yu, C., Meng, W.: The Effect of Negation on Sentiment Analysis and Retrieval Effectiveness. In: Proc. of CIKM 2009 (2009) Google Scholar
  9. 9.
    Kim, S.-M., Hovy, E.: Determining the Sentiment of Opinions. In: Proc. of COLING 2004 (2004) Google Scholar
  10. 10.
    Kim, Y., Choi, Y., Myaeng, S.-H.: Generating Domain-specific Clues using News Corpus for Sentiment Classification. In: Proc. of Weblogs and Social Media 2010 (2010) Google Scholar
  11. 11.
    Melville, P., Gryc, W., Lawrence, R.: Sentiment Analysis of Blogs by Combining Lexical Knowledge with Text Classification. In: Proc. of SIGKDD 2009 (2009) Google Scholar
  12. 12.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. In: Proc. of HLT/EMNLP 2005 (2005) Google Scholar
  13. 13.
    Tan, S., Cheng, X., Wang, Y., Xu, H.: Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 337–349. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Pan, S., Ni, X., Sun, J.-T., Yang, Q., Chen, Z.: Cross-Domain Sentiment Classification via Spectral Feature Alignment. In: Proc. of WWW 2010 (2010) Google Scholar
  15. 15.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification usingMachine Learning Techniques. In: Proc. of EMNLP 2002 (2002) Google Scholar
  16. 16.
    Stone, P., Bales, R., Namenwirth, J., Ogilvie, D.: The General Inquirer: A Computer System for Content Analysis and Retrieval Based on the Sentence as a Unit of Information. The MIT Press (1966) Google Scholar
  17. 17.
    Esuli, A., Sebastian, F.: SentiWordNet: A Publicly Available Lexical Resource for Opinion Mining. In: Proc. of LREC 2006 (2006) Google Scholar
  18. 18.
    Seki, Y., Ku, L.-W., Sun, L., Chen, H.-H., Kando, N.: Overview of Multilingual Opinion Analysis at NTCIR-8. In: Proc. of NTCIR-8 (2010) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yoonjung Choi
    • 1
  • Hyo-Jung Oh
    • 2
  • Sung-Hyon Myaeng
    • 1
  1. 1.Department of Computer ScienceKAISTDeajeonSouth Korea
  2. 2.ETRIDeajeonSouth Korea

Personalised recommendations