A graph-Based Approach to WSD Using Relevant Semantic Trees and N-Cliques Model

  • Yoan Gutiérrez
  • Sonia Vázquez
  • Andrés Montoyo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7181)


In this paper we propose a new graph-based approach to solve semantic ambiguity using a semantic net based on WordNet. Our proposal uses an adaptation of the Clique Partitioning Technique to extract sets of strongly related senses. For that, an initial graph is obtained from senses of WordNet combined with the information of several semantic categories from different resources: WordNet Domains, SUMO and WordNet Affect. In order to obtain the most relevant concepts in a sentence we use the Relevant Semantic Trees method. The evaluation of the results has been conducted using the test data set of Senseval-2 obtaining promising results.


Word Sense Disambiguation Graph-based N-Cliques WordNet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agirre, E., Soroa, A.: Personalizing PageRank for Word Sense Disambiguation. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2009), Athens, Greece (2009)Google Scholar
  2. 2.
    Atserias, J., Villarejo, L., Rigau, G., Agirre, E., Carroll, J., Magnini, B., Vossen, P.: The MEANING Multilingual Central Repository. In: Proceedings of the Second International Global WordNet Conference (GWC 2004), Brno, Czech Republic (2004)Google Scholar
  3. 3.
    Balasundaram, B., Butenko, S., Hicks, I.V., Sachdeva, S.: Clique relaxations in Social Network Analisis: The Maximun k-plex Problem (2006)Google Scholar
  4. 4.
    Cavique, L., Mendes, A.B., Santos, J.M.A.: An Algorithm to Discover the k-Clique Cover in Networks. In: Lopes, L.S., Lau, N., Mariano, P., Rocha, L.M. (eds.) EPIA 2009. LNCS, vol. 5816, pp. 363–373. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Cotton, S., Edmonds, P., Kilgarriff, A., Palmer, M.: English All word. In: SENSEVAL-2: Second International Workshop on Evaluating Word Sense Disambiguation Systems. Association for Computational Linguistics, Toulouse, Toulouse (2001)Google Scholar
  6. 6.
    Dorr, B.J., Castellón, M.A.M.: Spanish EuroWordNet and LCS-Based Interlingual MT. In: AMTA/SIG-IL First Workshop on Interlinguas, San Diego, CA (1997)Google Scholar
  7. 7.
    Fellbaum, C.: WordNet. An Electronic Lexical Database. The MIT Press, University of Cambridge (1998)zbMATHGoogle Scholar
  8. 8.
    Friedkin, N.E.: Structural Cohesion and Equivalence Explanations of Social Homogeneity. Sociological Methods & Research 12, 235–261 (1984)CrossRefGoogle Scholar
  9. 9.
    Gutiérrez, Y., Fernández, A., Montoyo, A., Vázquez, S.: Integration of semantic resources based on WordNet. In: XXVI Congreso de la Sociedad Española para el Procesamiento del Lenguaje Natural, SEPLN 2010, vol. 45, pp. 161–168. Universidad Politécnica de Valencia, Valencia (2010)Google Scholar
  10. 10.
    Gutiérrez, Y., Fernández, A., Montoyo, A., Vázquez, S.: UMCC-DLSI: Integrative resource for disambiguation task. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 427–432. Association for Computational Linguistics, Uppsala (2010)Google Scholar
  11. 11.
    Gutiérrez, Y., Fernández, A., Montoyo, A., Vázquez, S.: Enriching the Integration of Semantic Resources based on WordNet. Procesamiento del Lenguaje Natural 47, 249–257 (2011)Google Scholar
  12. 12.
    Gutiérrez, Y., Vázquez, S., Montoyo, A.: Improving WSD using ISR-WN with Relevant Semantic Trees and SemCor Senses Frequency. In: Proceedings of the International Conference Recent Advances in Natural Language Processing 2011, RANLP 2011 Organising Committee, Hissar, Bulgaria, pp. 233–239 (2011)Google Scholar
  13. 13.
    Gutiérrez, Y., Vázquez, S., Montoyo, A.: Sentiment Classification Using Semantic Features Extracted from WordNet-based Resources. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA 2011), pp. 139–145. Association for Computational Linguistics, Portland (2011)Google Scholar
  14. 14.
    Gutiérrez, Y., Vázquez, S., Montoyo, A.: Word Sense Disambiguation: A Graph-Based Approach Using N-Cliques Partitioning Technique. In: Muñoz, R., Montoyo, A., Métais, E. (eds.) NLDB 2011. LNCS, vol. 6716, pp. 112–124. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Ide, N., Véronis, J.: Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art. Computational Linguistics 24, 2–40 (1998)Google Scholar
  16. 16.
    Laparra, E., Rigau, G., Cuadros, M.: Exploring the integration of WordNet and FrameNet. In: Proceedings of the 5th Global WordNet Conference (GWC 2010), Mumbai, India (2010)Google Scholar
  17. 17.
    Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15, 159–190 (1950)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Luce, R.D., Perry, A.D.: A Method of Matrix Analysis of Group Structure. Psychometrie 14, 95–116 (1949)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Magnini, B., Strapparava, C., Pezzulo, G., Gliozzo, A.: Comparing Ontology-Based and Corpus-Based Domain Annotations in WordNet. In: Proceedings of the First International WordNet Conference, Mysore, India, pp. 21–25 (2002)Google Scholar
  20. 20.
    Mokken, R.J.: Cliques, Clubs and Clans, vol. 13. Elsevier Scientific Publishing Company, Amsterdam (1979)Google Scholar
  21. 21.
    Moldovan, D.I., Rus, V.: Explaining Answers with Extended WordNet. ACL (2001)Google Scholar
  22. 22.
    Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41, 10:11–10:69 (2009)Google Scholar
  23. 23.
    Navigli, R., Velardi, P.: Structural Semantic Interconnections: a Knowledge-Based Approach to Word Sense Disambiguation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 27 (2005)Google Scholar
  24. 24.
    Pianta, E., Bentivogli, L., Girardi, C.: MultiWordNet. Developing an aligned multilingual database. In: Proceedings of the 1st International WordNet Conference, Mysore, India, pp. 293–302 (2002)Google Scholar
  25. 25.
    Ponzetto, S.P., Navigli, R.: Knowledge-Rich Word Sense Disambiguation Rivaling Supervised Systems. In: ACL, pp. 1522–1531 (2010)Google Scholar
  26. 26.
    Reddy, S., Inumella, A., McCarthy, D., Stevenson, M.: IIITH: Domain Specific Word Sense Disambiguation. In: Proceedings of the 5th International Workshop on Semantic Evaluation. Association for Computational Linguistics, Uppsala (2010)Google Scholar
  27. 27.
    Sinha, R., Mihalcea, R.: Unsupervised Graph-based Word Sense Disambiguation Using Measures of Word Semantic Similarity. In: Proceedings of the IEEE International Conference on Semantic Computing (ICSC 2007), Irvine, CA (2007)Google Scholar
  28. 28.
    Soroa, A., Agirre, E., de Lacalle, O.L., Bosma, W., Vossen, P., Monachini, M., Lo, J., Hsieh, S.-K.: Kyoto: An Integrated System for Specific Domain WSD. In: Proceedings of the 5th International Workshop on Semantic Evaluation. Association for Computational Linguistics, Uppsala (2010)Google Scholar
  29. 29.
    Tseng, C.-J., Siewiorek, D.P.: Automated Synthesis of Data Paths in Digital Systems. IEEE Trans. on CAD of Integrated Circuits and Systems 5, 379–395 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yoan Gutiérrez
    • 1
  • Sonia Vázquez
    • 2
  • Andrés Montoyo
    • 2
  1. 1.Department of InformaticsUniversity of MatanzasCuba
  2. 2.Research Group of Language Processing and Information Systems, Department of Software and Computing SystemsUniversity of AlicanteSpain

Personalised recommendations