Human Age Estimation and Sex Classification

  • Guodong Guo
Part of the Studies in Computational Intelligence book series (SCI, volume 409)


Collecting demographic information from the customers, such as age and sex, is very important for marketing and customer group analysis. For instance, the marketing study has an interest to know how many people visited a shopping mall, and what is the distribution of the customers, such as how many males and females; how many young, adult, and senior people. Instead of hiring human workers to observe the customers, a computational system might be developed to analyze people who appeared in images and videos captured by cameras installed in a shopping mall, and then gather the demographic information. To develop a real system for age estimation and sex classification, many essential issues have to be addressed. In this chapter, a detailed introduction of the computational approaches to human age estimation and sex classification will be given. Various methods for feature extraction and learning will be described. Major challenges and future research directions will also be discussed. The goal is to inspire new research and encourage deeper investigation towards developing a working system for business intelligence.


Face Recognition Support Vector Regression Local Binary Pattern Aging Function Active Appearance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Face Recognition Homepage,
  2. 2.
    Intellio visiscanner retail customer analytics solution,
  3. 3.
    NEC develops an ultra-compact sensor that estimates age and gender,
  4. 4.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Baluja, S., Rowley, H.A.: Boosting sex identification performance. Intl. J. of Comput. Vision 71(1), 111–119 (2007)CrossRefGoogle Scholar
  6. 6.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1996)Google Scholar
  7. 7.
    Bruce, V., Burton, A., Hanna, E., Healey, P., Mason, O.: Sex discrimination: How do we tell the difference between male and female faces? Perception 22, 131–152 (1993)CrossRefGoogle Scholar
  8. 8.
    Brunelli, R., Poggio, T.: Hyperbf networks for gender classification. In: Proc. DARPA Image Understanding Workshop, pp. 311–314 (1992)Google Scholar
  9. 9.
    Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition. IEEE Trans. on Image Processing 15, 3608–3614 (2006)CrossRefGoogle Scholar
  10. 10.
    Cai, D., He, X., Zhou, K., Han, J., Bao, H.: Locality sensitive discriminant analysis. In: Proc. Int. Joint Conf. on Artificial Intell. (2007)Google Scholar
  11. 11.
    Cao, L., Dikmen, M., Fu, Y., Huang, T.: Gender recognition from body. In: ACM Multimedia (2008)Google Scholar
  12. 12.
    Chang, Y., Wang, Y., Ricanek, K., Chen, C.: Feature selection for improved automatic gender classification. In: IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 29–35 (2011)Google Scholar
  13. 13.
    Chellappa, R., Sinha, P., Phillips, P.: Face recognition by computers and humans. IEEE Computer 43(2), 46–55 (2010)CrossRefGoogle Scholar
  14. 14.
    Chellappa, R., Turaga, P.: Recent advances in age and height estimation from still images and video. In: IEEE Conf. on AFGR (2011)Google Scholar
  15. 15.
    Chen, C., Chang, Y., Ricanek, K., Wang, Y.: Face age estimation using model selection. In: IEEE CVPR Workshop, pp. 93–99 (2010)Google Scholar
  16. 16.
    Christensen, K., Doblhammer, G., Rau, R., Vaupel, J.: Ageing populations: the challenges ahead. Lancet 374, 1196–1208 (2009)CrossRefGoogle Scholar
  17. 17.
    Christensen, K., Johnson, T., Vaupel, J.: The quest for genetic determinants of human longevity: challenges and insights. Nature Reviews Genetics 7, 436–448 (2006)CrossRefGoogle Scholar
  18. 18.
    Christensen, K., Thinggaard, M., McGue, M., Rexbye, H., Hjelmborg, J., Aviv, A., Gunn, D., Ouderaa, F., Vaupel, J.: Perceived age as clinically useful biomarker of ageing: Cohort study. British Medical Journal 339, b5262 (2009)CrossRefGoogle Scholar
  19. 19.
    Comon, P.: Independent component analysis: A new concept? Signal Processing 36(3), 287–314 (1994)zbMATHCrossRefGoogle Scholar
  20. 20.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)Google Scholar
  21. 21.
    Costen, N., Brown, M., Akamastu, S.: Sparse models for gender classification. In: IEEE Int’l. Conf. on Automatic Face and Gesture Recognition (2004)Google Scholar
  22. 22.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conf. on Comput. Vision and Pattern Recognit., pp. 886–893 (2005)Google Scholar
  23. 23.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Statistical Society, Series B 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Farkas, L.: Anthropometry of the Head and Face. Raven Press, New York (1994)Google Scholar
  25. 25.
    FGNET: The fg-net aging database (2002),
  26. 26.
    Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Proc. the Thirteen International Conference on Machine Learning, pp. 148–156 (1996)Google Scholar
  27. 27.
    Fu, Y., Guo, G.D., Huang, T.S.: Soft biometrics for video surveillance. In: Ma, Y., Qian, G. (eds.) Intelligent Video Surveillance: Systems and Technology. Taylor and Francis Group, LLC (2009)Google Scholar
  28. 28.
    Fu, Y., Guo, G.D., Huang, T.S.: Age synthesis and estimation via faces: A survey. IEEE Trans. Pattern Analysis and Machine Intelligence 32(11), 1955–1976 (2010)CrossRefGoogle Scholar
  29. 29.
    Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging manifold. IEEE Trans. on Multimedia 10(4), 578–584 (2008)CrossRefGoogle Scholar
  30. 30.
    Fu, Y., Xu, Y., Huang, T.S.: Estimating human ages by manifold analysis of face pictures and regression on aging features. In: IEEE Conf. on Multimedia and Expo., pp. 1383–1386 (2007)Google Scholar
  31. 31.
    Fukai, H., Takimoto, H., Mitsukura, Y., Fukumi, M.: Apparent age estimation system based on age perception. In: SICE Annual Conference, pp. 2808–2812 (2007)Google Scholar
  32. 32.
    Gallagher, A., Chen, T.: Understanding images of groups of people. In: CVPR, pp. 256–263 (2009)Google Scholar
  33. 33.
    Gao, F., Ai, H.: Face age classification on consumer images with gabor feature and fuzzy lda method. In: The 3rd IAPR Intl. Conf. on Biometrics (2009)Google Scholar
  34. 34.
    Gao, W., Ai, H.: Face gender classification on consumer images in a multiethnic environment. In: Intl. Conf. on Biometrics (2009)Google Scholar
  35. 35.
    Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. on PAMI 29(12), 2234–2240 (2007)CrossRefGoogle Scholar
  36. 36.
    Geng, X., Zhou, Z.H., Zhang, Y., Li, G., Dai, H.: Learning from facial aging patterns for automatic age estimation. In: ACM Conf. on Multimedia, pp. 307–316 (2006)Google Scholar
  37. 37.
    Golomb, B., Lawrence, D., Sejnowski, T.: Sexnet: A neural network identifies sex from human faces. In: Advances in Neural Information Processing Systems, vol. 3, pp. 572–577 (1991)Google Scholar
  38. 38.
    Graf, A., Wichmann, F.: Gender classification of human faces. In: Int’l Workshop on Biologically Motivated Computer Vision, pp. 491–500 (2002)Google Scholar
  39. 39.
    Gunay, A., Nabiyev, V.V.: Automatic detection of anthropometric features from facial images. In: IEEE Conf. on Signal Processing and Communications Applications (2007)Google Scholar
  40. 40.
    Gunay, A., Nabiyev, V.V.: Automatic age classification with LBP. In: Proc. Int’l Symp. Computer and Information Science (2008)Google Scholar
  41. 41.
    Guo, G.D., Dyer, C., Fu, Y., Huang, T.S.: Is gender recognition affected by age? In: IEEE International Workshop on Human-Computer Interaction, pp. 2032–2039 (2009)Google Scholar
  42. 42.
    Guo, G.D., Fu, Y., Dyer, C., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Processing 17(7), 1178–1188 (2008)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Guo, G.D., Fu, Y., Dyer, C., Huang, T.S.: A probabilistic fusion approach to human age prediction. In: International Workshop on Semantic Learning Applications in Multimedia (2008)Google Scholar
  44. 44.
    Guo, G.D., Fu, Y., Huang, T., Dyer, C.: Locally adjusted robust regression for human age estimation. In: IEEE Workshop on Application of Computer Vision (2008)Google Scholar
  45. 45.
    Guo, G.D., Mu, G.: Human age estimation: what is the influence across race and gender? In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures (2010)Google Scholar
  46. 46.
    Guo, G.D., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 657–664 (2011)Google Scholar
  47. 47.
    Guo, G., Mu, G., Fu, Y.: Gender from Body: A Biologically-Inspired Approach with Manifold Learning. In: Zha, H., Taniguchi, R.-I., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5996, pp. 236–245. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  48. 48.
    Guo, G.D., Mu, G., Fu, Y., Dyer, C., Huang, T.S.: A study on automatic age estimation on a large database. In: IEEE International Conference on Computer Vision, pp. 1986–1991 (2009)Google Scholar
  49. 49.
    Guo, G.D., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 112–119 (2009)Google Scholar
  50. 50.
    Guo, G.D., Mu, G., Ricanek, K.: Cross-age face recognition on a very large database: the performance versus age intervals and improvement using soft biometric traits. In: International Conference on Pattern Recognition (2010)Google Scholar
  51. 51.
    Hayashi, J., Yasumoto, M., Ito, H., Koshimizu, H.: A method for estimating and modeling age and gender using facial image processing. In: Seventh Int. Conf. on Virtual Systems and Multimedia, pp. 439–448 (2001)Google Scholar
  52. 52.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Rep., 7–49. University of Massachusetts, Amherst (2007)Google Scholar
  53. 53.
    Jain, A., Huang, J.: Integrating independent component analysis and linear discriminant analysis for gender classification. In: IEEE Int’l Conf. on Automatic Face and Gesture Recognition (2004)Google Scholar
  54. 54.
    Jain, A.K., Dass, S.C., Nandakumar, K.: Soft Biometric Traits for Personal Recognition Systems. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 731–738. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  55. 55.
    Johnson, T.: Recent results: Biomarkers of aging. Experimental Gerontology 41, 1243–1246 (2006)CrossRefGoogle Scholar
  56. 56.
    Kanno, T., Akiba, M., Teramachi, Y., Nagahashi, H., Agui, T.: Classification of age group based on facial images of young males by using neural networks. IEICE Trans. on Information and Systems E84-D(8), 1094–1101 (2001)Google Scholar
  57. 57.
    Kwon, Y., Lobo, N.: Age classification from facial images. Computer Vision and Image Understanding 74(1), 1–21 (1999)CrossRefGoogle Scholar
  58. 58.
    Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Trans. on SMC-B 24(4), 621–628 (2002)Google Scholar
  59. 59.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. on Pattern Anal. Mach. Intell. 34(1), 442–455 (2002)CrossRefGoogle Scholar
  60. 60.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  61. 61.
    Luu, K., Ricanek, K., Bui, T., Suen, C.: Age estimation using active appearance models and support vector machine regression. In: IEEE Conf. on BTAS, pp. 1–5 (2009)Google Scholar
  62. 62.
    Makinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008)CrossRefGoogle Scholar
  63. 63.
    Martin, A.: Bank transfer fraudsters have that grift of gab. The Japanese Times (2009),
  64. 64.
    Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)CrossRefGoogle Scholar
  65. 65.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts - towards memetic algorithms (1989)Google Scholar
  66. 66.
    Mutch, J., Lowe, D.: Object class recognition and localization using sparse features with limited receptive fields. In: IEEE Conf. on Comput. Vision and Pattern Recognit., pp. 11–18 (2006)Google Scholar
  67. 67.
    Ni, B., Song, Z., Yan, S.: Web image mining towards universal age estimator. In: ACM Multimedia (2009)Google Scholar
  68. 68.
    Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: IEEE Conf. on Comput. Vision and Pattern Recognit., pp. 193–199 (1997)Google Scholar
  69. 69.
    Park, U., Tong, Y., Jain, A.K.: Face recognition with temporal invariance: A 3d aging model. In: Intl. Conf. on Automatic Face and Gesture Recognition (2008)Google Scholar
  70. 70.
    Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The feret evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  71. 71.
    Ramanathan, N., Chellappa, R.: Face verification across age progression. IEEE Trans. on Image Processing 15(11), 3349–3361 (2006)CrossRefGoogle Scholar
  72. 72.
    Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: IEEE CVPR, pp. 387–394 (2006)Google Scholar
  73. 73.
    Ramanathan, N., Chellappa, R., Biswas, S.: Age progression in human faces: A survey. Visual Languages and Computing (2009)Google Scholar
  74. 74.
    Rhodes, M.G.: Age estimation of faces: A review. Applied Cognitive Psychology 23, 1–12 (2009)CrossRefGoogle Scholar
  75. 75.
    Ricanek, K., Tesafaye, T.: Morph: A longitudinal image database of normal adult age-progression. In: IEEE Conf. on AFGR, pp. 341–345 (2006)Google Scholar
  76. 76.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2(11), 1019–1025 (1999)CrossRefGoogle Scholar
  77. 77.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  78. 78.
    Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007)CrossRefGoogle Scholar
  79. 79.
    Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: IEEE Conf. on Comput. Vision and Pattern Recognit. (2005)Google Scholar
  80. 80.
    Shakhnarovich, G., Viola, P., Moghaddam, B.: A unified learning framework for real time face detection and classification. In: Intl. Conf. on Automatic Face and Gesture Recognition (2002)Google Scholar
  81. 81.
    Shan, C.: Gender Classification on Real-Life Faces. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part II. LNCS, vol. 6475, pp. 323–331. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  82. 82.
    Shan, C.: Learning local features for age estimation on real-life faces. In: ACM Intl. Workshop on Multimodal Pervasive Video Analysis (2010)Google Scholar
  83. 83.
    Shan, C., Gong, S., McOwan, P.W.: Fusing gait and face cues for human gender recognition. Neurocomputing 71(10-12), 1931–1938 (2008)CrossRefGoogle Scholar
  84. 84.
    Stegmann, M., Ersboll, B., Larsen, R.: FAME - A flexible appearance modelling environment. IEEE Trans. Medical Imaging 22(10), 1319–1331 (2003)CrossRefGoogle Scholar
  85. 85.
    Sun, Z., Bebis, G., Yuan, X., Louis, S.: Genetic feature subset selection for gender classification: A comparison study. In: IEEE Workshop on Application of Computer Vision (2002)Google Scholar
  86. 86.
    Suo, J., Zhu, S., Shan, S., Chen, X.: A compositional and dynamic model for face aging. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 385–401 (2010)CrossRefGoogle Scholar
  87. 87.
    Tan, Q., Kruse, T., Christensen, K.: Design and analysis in genetic studies of human ageing and longevity. Ageing Research Reviews 5, 371–387 (2006)CrossRefGoogle Scholar
  88. 88.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  89. 89.
    Toews, M., Arbel, T.: Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1567–1581 (2009)CrossRefGoogle Scholar
  90. 90.
    Ueki, K., Hayashida, T., Kobayashi, T.: Subspace-based age-group classification using facial images under various lighting conditions. In: IEEE Conf. on AFGR (2006)Google Scholar
  91. 91.
    Vapnik, V.N.: Statistical Learning Theory. John Wiley, New York (1998)zbMATHGoogle Scholar
  92. 92.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple. In: Proc. IEEE CVPR (2001)Google Scholar
  93. 93.
    Wang, Y., Ricanek, K., Chen, C., Chang, Y.: Gender classification from infants to seniors. In: IEEE Conf. on BTAS, pp. 1–6 (2010)Google Scholar
  94. 94.
    Wild, H.A., Barrett, S.E., Spence, M.J., O’Toole, A.J., Cheng, Y.D., Brooke, J.: Recognition and sex categorization of adults’ and children’s faces: examining performance in the absence of sex-stereotyped cues. J. of Exp. Child Psychology 77, 269–291 (2000)CrossRefGoogle Scholar
  95. 95.
    Wu, B., Ai, H., Huang, C., Lao, S.: Lut-based adaboost for gender classification. In: Intl. Conf. on Audio and Video-Based Person Authentication (2003)Google Scholar
  96. 96.
    Wu, T.X., Lu, B.L.: Multi-View Gender Classification Using Hierarchical Classifiers Structure. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010. LNCS, vol. 6444, pp. 625–632. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  97. 97.
    Xiao, B., Yang, X., Xu, Y.: Learning distance metric for regression by semidefinite programming with application to human age estimation. In: ACM Multimedia (2009)Google Scholar
  98. 98.
    Xu, X., Huang, T.S.: SODA-Boosting and Its Application to Gender Recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 193–204. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  99. 99.
    Xu, Z., Chen, H., Zhu, S., Luo, J.: A hierarchical compositional model for face representation and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 955–969 (2008)CrossRefGoogle Scholar
  100. 100.
    Yamaguchi, M.K., Hirukawa, T., Kanazawa, S.: Judgment of sex through facial parts. Perception 24, 563–575 (1995)CrossRefGoogle Scholar
  101. 101.
    Yan, S., Liu, M., Huang, T.: Extracting age information from local spatially flexible patches. In: IEEE Conf. on ICASSP, pp. 737–740 (2008)Google Scholar
  102. 102.
    Yan, S., Wang, H., Huang, T.S., Tang, X.: Ranking with uncertain labels. In: IEEE Conf. on Multimedia and Expo., pp. 96–99 (2007)Google Scholar
  103. 103.
    Yan, S., Wang, H., Tang, X., Huang, T.: Learning auto-structured regressor from uncertain nonnegative labels. In: IEEE Conf. on ICCV (2007)Google Scholar
  104. 104.
    Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51 (2007)CrossRefGoogle Scholar
  105. 105.
    Yan, S., Zhou, X., Liu, M., Hasegawa-Johnson, M., Huang, T.: Regression from patch-kernel. In: IEEE Conf. on CVPR (2008)Google Scholar
  106. 106.
    Yang, Z., Ai, H.: Demographic classification with local binary patterns. In: Intl. Conf. on Biometrics, pp. 464–473 (2007)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Computer Science and Electrical EngineeringWest Virginia UniversityWest VirginiaUSA

Personalised recommendations