Skip to main content

Auto-calibration of Non-overlapping Multi-camera CCTV Systems

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 409))

Abstract

Deployment of existing vision approaches in camera networks for applications such as human tracking show a large gap between user expectation and current results. Calibrated cameras could push these approaches closer to applicability, as physical constraints greatly complement the ill-posed acquisition process. Calibrated cameras promise also new applications as spatial relationships among cameras and the environment capture additional information. However, a convenient calibration is still a challenge on its own. This paper presents a novel calibration framework for large networks including non-overlapping cameras. The framework purely relies on visual information coming from walking people. Since non-overlapping scenarios make point correspondences impossible, time constancy of a person’s motion introduces the missing complementary information. The framework obtains calibrated cameras starting from single camera calibration thereby bringing the problem to a reduced form suitable for multi-view calibration. It extends the standard bundle adjustment by a smoothness constraint to avoid the ill-posed problem arising from missing point correspondences. The stratified optimization suppresses the danger to get stuck in local minima. Experiments with synthetic and real data validate the approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lv, F., Zhao, T., Nevatia, R.: Self-calibration of a camera from video of a walking human. In: ICPR (2002)

    Google Scholar 

  2. Krahnstoever, N., Mendonca, P.R.S.: Bayesian autocalibration for surveillance. In: ICCV, pp. II:1858–II:1865 (2005)

    Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  4. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Rahimi, A., Dunagan, B., Darrell, T.: Simultaneous calibration and tracking with a network of non-overlapping sensors. In: CVPR, pp. (I):187–(I):194 (2004)

    Google Scholar 

  6. McGlone (ed.): Manual of Photogrammetry. ASPRS (2004)

    Google Scholar 

  7. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer (2009)

    Google Scholar 

  8. Baker, P., Aloimonos, Y.: Complete calibration of a multi-camera network. In: Proceedings of IEEE Workshop on Omnidirectional Vision, pp. 134–141 (2000)

    Google Scholar 

  9. Svoboda, T., Martinec, D., Pajdla, T.: A convinient multi-camera self-calibration for virtual environments. PRESENCE: Teleoperators and Virtual Environments 14(4), 407–422 (2005)

    Article  Google Scholar 

  10. Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams: Establishing a common coordinate frame. IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI) 22(8), 758–767 (2000)

    Article  Google Scholar 

  11. Stein, G.: Tracking from multiple view points: Self-calibration of space and time. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1521–1527 (1999)

    Google Scholar 

  12. Jaynes, C.: Multi-view calibration from planar motion trajectories. Image and Vision Computing 22(7), 535–550 (2004)

    Article  Google Scholar 

  13. Thaler, M., Mandrzinger, R.: Automatic inter-image homography estimation from person detections. In: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 456–461 (September 2010)

    Google Scholar 

  14. Kahn, S., Shah, M.: Consistent labeling of tracked objects in multiple cameras with overlapping fields of view. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(10), 1355–1360 (2003)

    Article  Google Scholar 

  15. Funiak, S., Guestrin, C., Paskin, M., Sukthankar, R.: Distributed localization of networked cameras. In: Proceedings of the 5th International Conference on Information Processing in Sensor Networks (IPSN), Nashville, pp. 34–42 (April 2006)

    Google Scholar 

  16. Sheikh, Y., Li, X., Shah, M.: Trajectory association across non-overlapping moving cameras in planar scenes. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–7 (June 2007)

    Google Scholar 

  17. Rudoy, M., Rohrs, C.E.: Simultaneous sensor calibration and path estimation. In: Proc. IEEE Asilomar Conference on Signals, Systems, and Computers (2006)

    Google Scholar 

  18. Ellis, T.J., Makris, D., Black, J.K.: Learning a multi-camera topology. In: Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 165–171 (2003)

    Google Scholar 

  19. Tieu, K., Dalley, G., Grimson, W.E.L.: Inference of non-overlapping camera network topology by measuring statistical dependence. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1842–1849 (2005)

    Google Scholar 

  20. van den Hengel, A., Dick, A., Hill, R.: Activity topology estimation for large networks of cameras. In: IEEE International Conference on Video and Signal Based Surveillance, AVSS 2006, p. 44 (November 2006)

    Google Scholar 

  21. Devarajan, D., Cheng, Z., Radke, R.: Calibrating distributed camera networks. Proceedings of the IEEE 96(10), 1625–1639 (2008)

    Article  Google Scholar 

  22. Micusik, B., Pajdla, T.: Simultaneous surveillance camera calibration and foot-head homology estimation from human detections. In: CVPR (2010)

    Google Scholar 

  23. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment – A Modern Synthesis (chapter Bundle adjustment - a modern synthesis). In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Beleznai, C., Bischof, H.: Fast human detection in crowded scenes by contour integration and local shape estimation. In: CVPR (2009)

    Google Scholar 

  25. Liebelt, J., Schmid, C., Schertler, K.: Viewpoint-independent object class detection using 3D feature maps. In: CVPR (2008)

    Google Scholar 

  26. Toshev, A., Makadia, A., Daniilidis, K.: Shape-based object recognition in videos using 3D synthetic object models. In: CVPR (2009)

    Google Scholar 

  27. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)

    Google Scholar 

  28. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM (2000)

    Google Scholar 

  29. Grammont, L., Higham, N.J., Tisseur, F.: A framework for analyzing nonlinear eigenproblems and parametrized linear systems. Linear Algebra and its Applications (2010)

    Google Scholar 

  30. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: CVPR, pp. (I):125–(I):132 (2001)

    Google Scholar 

  31. Micusik, B., Pajdla, T.: Structure from motion with wide circular field of view cameras. PAMI 28(7) (2006)

    Google Scholar 

  32. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems. In: BMVC (2008)

    Google Scholar 

  33. Bujnak, M., Kukelova, Z., Pajdla, T.: 3D reconstruction from image collections with a single known focal length. In: ICCV (2009)

    Google Scholar 

  34. Micusik, B.: Relative pose problem for non-overlapping surveillance cameras with known gravity vector. In: CVPR (2011)

    Google Scholar 

  35. Boutry, G., Elad, M., Golub, G.H., Milanfar, P., Milanfar, G.H.G.P.: The generalized eigenvalue problem for non-square pencils using a minimal perturbation approach. SIAM J. Matrix Anal. Appl. 27, 582–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pflugfelder, R., Bischof, H.: Localization and trajectory reconstruction in surveillance cameras with non-overlapping views. PAMI 32(4), 709–721 (2009)

    Article  Google Scholar 

  37. Lourakis, M.I.A., Argyros, A.A.: SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans. Math. Software 36(1), 1–30 (2009)

    Article  MathSciNet  Google Scholar 

  38. Kalal, Z., Matas, J., Mikolajczyk, K.: P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In: CVPR (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Picus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Picus, C., Pflugfelder, R., Micusik, B. (2012). Auto-calibration of Non-overlapping Multi-camera CCTV Systems. In: Shan, C., Porikli, F., Xiang, T., Gong, S. (eds) Video Analytics for Business Intelligence. Studies in Computational Intelligence, vol 409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28598-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28598-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28597-4

  • Online ISBN: 978-3-642-28598-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics