Design of Optimal Cost Fuzzy Controller for Spatial Double Inverted Pendulum System

  • Zhi-hong Miao
  • Zhi-hui Li
  • Yong-li Zhang
  • Hong-xing Li
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 147)

Abstract

For a spatial double inverted pendulum system, a design method of optimal cost fuzzy controller is developed via the parallel distributed compensation( PDC) approach. Firstly, by using the Lagrange equation, the mathematical model of the spatial double inverted pendulum is derived. Then, a sufficient condition for the existence of optimal cost fuzzy controller is presented with taking into account the ratio between the lengths of two pendulums, and it is formed in terms of linear matrix inequalities. Under a certain cost function, the best ratio between the lengths of two pendulums is solved by this method.

Keywords

T-S fuzzy model cost function spatial double inverted pendulum linear matrix inequalities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability. H control theory and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4(1), 1–13 (1996)CrossRefGoogle Scholar
  2. 2.
    Chung, C.C., Hauser, J.: Nonlinear control of a swinging pendulum. Automatica 31(6), 851–862 (1995)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Xue, A.K., Guan, B.L., Shang, Q.L., Wang, J.Z.: Modeling of triple inverted pendulum and H  ∞  robust optimal guaranteed cost control. Journal of Zhejiang University (Engineering Science) 38(12), 1637–1641 (2004)MATHGoogle Scholar
  4. 4.
    Yurkovich, S., Widjaja, M.: Fuzzy controller synthesis for an inverted pendulum system. Control Engineering Practice 4(4), 445–469 (1996)CrossRefGoogle Scholar
  5. 5.
    Yi, J., Yubazki, N.: Stabilization fuzzy control of inverted pendulum system. Artifical Intelligence in Engineering 14(2), 153–163 (2000)CrossRefGoogle Scholar
  6. 6.
    Li, H.X., Miao, Z.H., Wang, J.Y.: Variable universe adaptive fuzzy control on the quadruple inverted pendulum. Science in China (Series E) 32(1), 65–75 (2002)Google Scholar
  7. 7.
    Liu, G., Nesic, D., Mareels, I.: Non-local stabilization of a spherical inverted pendulum. International Journal of Control 81(7), 1035–1053 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Duan, X.C., Qiu, Y.Y., Duan, B.Y.: Adaptive sliding mode fuzzy control of planar inverted pendulum. Control and Design 22(7), 774–782 (2007)MATHGoogle Scholar
  9. 9.
    Yuan, P.G., Zhang, G.Y., Qin, Z.Q., Li, Z.X.: Analysis and controller design of plane double inverted pendulum. Control Engineering of China 11(6), 517–520 (2004)Google Scholar
  10. 10.
    Chang, S.S.L., Peng, T.K.C.: Adaptive guaranteed cost control of systems with uncertain parameters. IEEE Trans. Automat. Contr. 17(4), 474–483 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yu, L.: Optimal guaranteed cost control of linear uncertain system: an LMI approach. Control Theory and Applications 17(3), 423–428 (2000)MathSciNetMATHGoogle Scholar
  12. 12.
    Zheng, K., Xu, J.M., Yu, L.: Takiga-Sugeno model-based optimal guarenteed cost fuzzy control for inverted pendulum. Control Theory & Applications 21(5), 703–708 (2004)Google Scholar
  13. 13.
    Liu, Y.Z., Yang, H.X., Zhu, B.H.: Theoretical Mechanics. High Education Press (2001)Google Scholar
  14. 14.
    Marcelo, C.M., Teixeira, Stanislaw, H.Z.: Stabilizing controller design for uncertain nonlinear system using fuzzy models. IEEE Trans. on Fuzzy System 7(2), 133–142 (1999)CrossRefGoogle Scholar
  15. 15.
    Guan, X.P., Chen, C.L.: Delay-dependent guaranteed cost control for T-S Fuzzy systems with time delays. IEEE Trans. Fuzzy Systems 12(2), 236–249 (2004)MATHCrossRefGoogle Scholar
  16. 16.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhi-hong Miao
    • 1
  • Zhi-hui Li
    • 1
  • Yong-li Zhang
    • 2
  • Hong-xing Li
    • 2
  1. 1.Department of Fire Protection EngineeringThe Chinese People’s Armed Police Force AcademyLangfangChina
  2. 2.Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations