Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox

  • Sebastian Götschel
  • Martin Weiser
  • Anton Schiela

Abstract

This paper presents concepts and implementation of the finite element toolbox Kaskade 7, a flexible C++ code for solving elliptic and parabolic PDE systems, based on the Dune libraries. Issues such as problem formulation, assembly and adaptivity are discussed at the example of optimal control problems. Trajectory compression for parabolic optimization problems is considered as a case study.

Keywords

Optimal Control Problem Linear Solver Iterative Solver Implicit Euler Method Template Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in dune. computing. Computing 82(2-3), 121–138 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework. Computing 82(2-3), 103–119 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Blatt, M., Bastian, P.: The Iterative Solver Template Library. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 666–675. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Boost: C++ libraries, http://www.boost.org/
  5. 5.
    Deuflhard, P.: Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms. Series Computational Mathematics, vol. 35. Springer (2006)Google Scholar
  6. 6.
    Deuflhard, P., Leinen, P., Yserentant, H.: Concepts of an adaptive hierarchical finite element code. IMPACT Comp. Sci. Eng. 1(1), 3–35 (1989)MATHCrossRefGoogle Scholar
  7. 7.
    Deuflhard, P., Nowak, U.: Extrapolation integrators for quasilinear implicit ODEs. In: Deuflhard, P., Engquist, B. (eds.) Large Scale Scientific Computing, Progress in Scientific Computing, vol. 7, pp. 37–50, Birkhäuser (1987)Google Scholar
  8. 8.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE constraints. Springer, Berlin (2009)MATHGoogle Scholar
  9. 9.
    Kälberer, F., Polthier, K., von Tycowicz, C.: Lossless compression of adaptive multiresolution meshes. In: Proc. Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), vol. 22 (2009)Google Scholar
  10. 10.
    Logg, A.: Automating the finite element method. Arch. Comput. Methods Eng. 14, 93–138 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Martin, G.: Range encoding: an algorithm for removing redundancy from a digitised message. Presented at Video & Data Recording Conference, Southampton (1979)Google Scholar
  12. 12.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)MATHGoogle Scholar
  13. 13.
    Schiela, A., Günther, A.: An interior point algorithm with inexact step computation in function space for state constrained optimal control. Numer. Math. 119(2), 373–407 (2011)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Veldhuizen, T.: Using C++ template metaprograms. C++ Report 7(4), 36–43 (1995)Google Scholar
  15. 15.
    Weiser, M., Götschel, S.: State trajectory compression for optimal control with parabolic PDEs. SIAM J. Sci. Comput. 34(1), A161–A184 (2012)Google Scholar
  16. 16.
    Weiser, M., Gänzler, T., Schiela, A.: Control reduced primal interior point methods. Comput. Optim. Appl. 41(1), 127–145 (2008)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Zumbusch, G.: Symmetric hierarchical polynomials and the adaptive h-p-version. In: Ilin, A., Scott, L. (eds.) Proc. of the Third Int. Conf. on Spectral and High Order Methods, ICOSAHOM 1995. Houston Journal of Mathematics, pp. 529–540 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Götschel
    • 1
  • Martin Weiser
    • 1
  • Anton Schiela
    • 1
  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations