Advertisement

The Dune-PrismGrid Module

  • Christoph Gersbacher

Abstract

In this paper, we describe the design and implementation of the Dune meta grid module Dune-PrismGrid. A meta grid is a Dune grid wrapper for any other Dune grid, the so-called host grid. From the host grid’s elements prismatic grid cells are constructed, leading to a higher-dimensional grid with a distinguished direction. In order to exploit the prismatic grid structure, several additional element iterators are available in Dune-PrismGrid. We compare the performance of the module against other meta grid implementations, and we show some numerical examples with Dune-PrismGrid.

Keywords

Meta Grid Grid Dimension Abstraction Principle World Dimension Grid Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract Framework. Computing 82(2-3), 103–119 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Kornhuber, R., Klöfkorn, R., Ohlberger, M., Sander, O.: A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part II: Implementation and Tests in DUNE. Computing 82(2-3), 121–138 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dedner, A., Gersbacher, C.: A Local Discontinuous Galerkin Discretization for Hydrostatic Free Surface Flows Using σ- transformed Coordinates. In: Proc. of the 13th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Beijing (2010) accepted for publicationGoogle Scholar
  4. 4.
    Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive discretization schemes: Abstraction principles and the DUNE-FEM module. Computing 90(3-4), 165–196 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gerbeau, J.-F., Perthame, B.: Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst., Ser. B1 1(1), 89–102 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gersbacher, C.: Local Discontinuous Galerkin Verfahren zur Simulation flacher dreidimensionaler Strömungen mit freier Oberfläche. Diploma thesis. University of Freiburg (2008)Google Scholar
  7. 7.
    Kröner, D.: Numerical Schemes for Conservation Laws. Wiley-Teubner, Chichester (1997)Google Scholar
  8. 8.
    Nolte, M.: Efficient Numerical Approximation of the Effective Hamiltonian. Doctoral dissertation. University of Freiburg (2011)Google Scholar
  9. 9.
    DUNE - Distributed and Unified Numerics Environment, http://www.dune-project.org/
  10. 10.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Section of Applied MathematicsUniversity of FreiburgFreiburgGermany

Personalised recommendations