Dune-Fem: A General Purpose Discretization Toolbox for Parallel and Adaptive Scientific Computing

  • Andreas Dedner
  • Robert Klöfkorn
  • Martin Nolte
  • Mario Ohlberger


Dune-Fem is a free discretization toolbox for parallel and adaptive scientific computing based on Dune. The implementation of discretization schemes such as finite elements, finite volumes or discontinuous Galerkin schemes is based on abstractions that are very close to the mathematical description of the underlying methods. In this contribution we will give a compact overview on the design and abstraction principles of Dune-Fem and demonstrate its wide range of applicability in numerical experiments ranging from the solution of flow processes on surfaces to parallel and adaptive fluid flow in three space dimensions. A more detailed presentation of the abstraction principles is given in [Dedner et al. A generic interface for parallel and adaptive discretization scheme: abstraction principles and the Dune-Fem module. Computing 90 (2010), no. 3-4, 165-196]. In the whole design of Dune-Fem efficiency was a main concern. In this paper we will give some indication to what degree the generic programming principals used in Dune-Fem can lead to the generation of efficient code.


Discontinuous Galerkin Discrete Operator Local Discontinuous Galerkin Flop Performance Abstraction Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. II: Implementation and tests in dune. Computing 82(2-3), 121–138 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. I: Abstract framework. Computing 82(2-3), 103–119 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE). Kybernetika (Prague) 46(2), 294–315 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brdar, S., Baldauf, M., Dedner, A., Klöfkorn, R.: Comparison of dynamical cores for NWP models. Tech. rep(2011); Submitted to Journal of Theoretical and Computational Fluid DynamicGoogle Scholar
  5. 5.
    Brdar, S., Dedner, A., Klöfkorn, R.: Compact and stable Discontinuous Galerkin methods for convection-diffusion problems. J. Sci. Comp. 47, 365–389 (2010)Google Scholar
  6. 6.
    Davis, T.A.: Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004), doi: Google Scholar
  7. 7.
    Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive scientific computing: Abstraction principles and the DUNE-FEM module. Computing 89(1) (2010)Google Scholar
  8. 8.
    Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and computational methods for compressible flow. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003)Google Scholar
  9. 9.
    Müller, T.: Erhaltungsgleichungen auf Mannigfaltigkeiten. Wohlgestelltheit, Totalvariationsabschätzungen und Numerik. Diploma thesis, Universität Freiburg (2009)Google Scholar
  10. 10.
    Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1), 129–155 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Straka, J., Wilhelmson, R., Wicker, L., Anderson, J., Droegemeier, K.: Numerical solutions of a non-linear density current: A benckmark solution and comparisons. Int. J. 17, 1–22 (1993)MathSciNetGoogle Scholar
  12. 12.
    Treibig, J., Hager, G., Wellein, G.: Likwid: A lightweight performance-oriented tool suite for x86 multicore environments. In: Proceedings of PSTI 2010, the First International Workshop on Parallel Software Tools and Tool Infrastructures, San Diego, CA (2010)Google Scholar
  13. 13.
    Website: DUNE-FEM – The FEM Module,
  14. 14.
    Website: DUNE – Distributed and Unified Numerics Environment,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Dedner
    • 1
  • Robert Klöfkorn
    • 2
  • Martin Nolte
    • 3
  • Mario Ohlberger
    • 4
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK
  2. 2.Institut für Angewandte Analysis und Numerische SimulationUniversity of StuttgartStuttgartGermany
  3. 3.Abteilung für Angewandte MathematikUniversität FreiburgFreiburg i. Br.Germany
  4. 4.Institute of Computational and Applied MathematicsUniversity of MuensterMuensterGermany

Personalised recommendations