Advertisement

On the Analysis of Porous Media Dynamics Using a Dune-PANDAS Interface

  • Maik Schenke
  • Wolfgang Ehlers
Conference paper

Abstract

The increasing complexity of numerical models and the requirement for more computational power is covered by multi-processor and multi-core hardware architectures. In order to exploit the capabilities of these machines, parallel algorithms are necessary. Therefore, the following article will describe first attempts in parallelizing the finite-element code PANDAS through an interface to the parallel software framework Dune. In this regard, this connection will overcome the computational limits of the sequential finite-element code PANDAS by introducing its material definitions to the Dune framework, in particular, to the external Dune module Dune-PDELab. As a first example, the propagation of a two-dimensional elastic shear-wave through a fluid-saturated soil will be analyzed in a non-parallel environment.

Keywords

Solid Skeleton Seepage Velocity Porous Medium Model Argument List External Load Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics., vol. III, pp. 1–127. Academic Press, New York (1976)Google Scholar
  2. 2.
    Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. International Journal of Engineering Sciences 18, 1129–1148 (1980)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. International Journal of Engineering Sciences 20, 697–735 (1982)zbMATHCrossRefGoogle Scholar
  4. 4.
    Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, New York (1991)zbMATHCrossRefGoogle Scholar
  5. 5.
    De Boer, R., Ehlers, W.: The development of the concept of effective stresses. Acta Mechanica 83, 77–92 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    De Boer, R.: Theory of porous media. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dune developer group (2010) Official homepage, http://www.dune-project.org/ (Cited December 7, 2011)
  8. 8.
    Dune team: DUNE-PDELAB-Howto. Lecture notes. Universität Heidelberg (2010)Google Scholar
  9. 9.
    Ehlers, W., Ellsiepen, P.: PANDAS – Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik. In: Finite Elemente in der Baupraxis – FEM 1998, pp. 391–400 (1998)Google Scholar
  10. 10.
    Ehlers, W.: Foundations of multiphasic and porous materials. In: Porous media: Theory, Experiments and Numerical Applications, pp. 3–96. Springer, Berlin (2002)Google Scholar
  11. 11.
    Ehlers, W.: Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. International Journal of Advances in Engineering Sciences and Applied Mathematics 1, 1–24 (2009)CrossRefGoogle Scholar
  12. 12.
    Ehlers, W., Acartürk, A., Karajan, N.: Advances in modelling saturated biological soft tissues and chemically active gels. Archive of Applied Mechanics 80, 467–478 (2010)CrossRefGoogle Scholar
  13. 13.
    Ehlers, W., Graf, T.: Saturated elasto-plastic porous media under consideration of gaseous and liquid phase transitions. In: Schanz, T. (ed.) Theoretical and Numerical Unsaturated Soil Mechanics, pp. 111–118. Springer, Berlin (2007)CrossRefGoogle Scholar
  14. 14.
    Frijn, A.J.H., Huyghe, J.M., Kaasschieter, E.F., Wijlaars, M.W.: Numerical simulation of deformations and electric potentials in cartilage substitute. Biorheology 40, 123–131 (2003)Google Scholar
  15. 15.
    Markert, B., Heider, Y., Ehlers, W.: Comparison of monolithic and splitting solution schemes for dynamic porous media problems. International Journal for Numerical Methods in Engineering 82, 1341–1383 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    PANDAS: A coupled finite-element solver, http://www.get-pandas.com (Cited December 7 2011)
  17. 17.
    Rempler, U.: Visualisierung von Ergebnissen aus numerischen Berechnungen. Diploma Thesis, Rep. No. 04-II-13, University of Stuttgart (2004)Google Scholar
  18. 18.
    Sun, D.N., Gu, W.Y., Guo, X.E., Mow, W.M.L.V.C.: A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. International Journal for Numerical Methods in Engineering 45, 1375–1402 (1999)zbMATHCrossRefGoogle Scholar
  19. 19.
    Truesdell, C.: Thermodynamics of diffusion. In: Truesdell (ed.) Rational Thermodynamics, 2nd edn., pp. 219–236. Springer, New York (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Universität StuttgartStuttgartGermany

Personalised recommendations