Skip to main content

On the Implementation of a Heterogeneous Multi-scale Finite Element Method for Nonlinear Elliptic Problems

  • Conference paper
  • 587 Accesses

Abstract

In this contribution, we formulate a heterogeneous multiscale finite element method (HMM) for monotone elliptic operators. This is done in the general concept of HMM, which was initially introduced by E and Engquist [E, Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1(1):87–132, 2003]. Since the straightforward formulation is not suitable for a direct implementation in the nonlinear setting, we present a corresponding algorithm, which involves the computation of additional cell problems. The algorithm is validated by numerical experiments and can be used to effectively determine homogenized solutions.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-28589-9_11
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-28589-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulle, A.: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. In: Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics. GAKUTO Internat. Ser. Math. Sci. Appl., Tokyo, vol. 31, pp. 133–181 (2009)

    Google Scholar 

  2. Abdulle, A., Engquist, B.: Finite element heterogeneous multiscale methods with near optimal computational complexity. Multiscale Model. Simul. 6(4), 1059–1084 (2007)

    CrossRef  MathSciNet  Google Scholar 

  3. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE. Computing 82, 121–138 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive discretization schemes: abstraction principles and the Dune-Fem module. In: Computing, pp. 1–32. Springer Wien (2010)

    Google Scholar 

  5. Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Google Scholar 

  6. Efendiev, Y., Hou, T., Ginting, V.: Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2(4), 553–589 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Henning, P., Ohlberger, M.: The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. Numer. Math. 113(4), 601–629 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Henning, P., Ohlberger, M.: A-posteriori error estimate for a heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Preprint Uni. Münster N09/09

    Google Scholar 

  9. Henning, P., Ohlberger, M.: The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Netw. Heterog. Media 5(4) (2010)

    Google Scholar 

  10. Ladyzhenskaya, O.A., Uraltseva, N.N.: Linear and quasilinear elliptic equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  11. Ohlberger, M.: A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems. Multiscale Model. Simul. 4(1), 88–114 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Wall, P.: Some homogenization and corrector results for nonlinear monotone operators. J. Nonlinear Math. Phys. 5(3), 331–348 (1998)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Henning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henning, P., Ohlberger, M. (2012). On the Implementation of a Heterogeneous Multi-scale Finite Element Method for Nonlinear Elliptic Problems. In: Dedner, A., Flemisch, B., Klöfkorn, R. (eds) Advances in DUNE. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28589-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28589-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28588-2

  • Online ISBN: 978-3-642-28589-9

  • eBook Packages: EngineeringEngineering (R0)